Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Агаханов Н.Х.

Назар Хангельдыевич Агаханов (р. 1954) - доцент кафедры высшей математики МФТИ, кандидат физико-математических наук. C 1974 года член жюри Всесоюзной (в 1992 году - Межреспубликанской, c 1993 года - Всероссийской олимпиады школьников по математике). Лидер национальной команды России на международной математической олимпиаде. Председатель Консультативного совета международной математической олимпиады.

Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Докажите, что если числа x, y, z при некоторых значениях p и q являются решениями системы
     y = xn + px + q,  z = yn + py + q,  x = zn + pz + q,
то выполнено неравенство  x²y + y²z + z²x ≥ x²z + y²x + z²y.
Рассмотрите случаи   а)  n = 2;   б)  n = 2010.

Вниз   Решение


Около сферы описан пространственный четырёхугольник. Доказать, что точки касания лежат в одной плоскости.

ВверхВниз   Решение


Точки А1 и А3 расположены по одну сторону от плоскости α, а точки А2 и А4 – по другую сторону. Пусть В1, В2, В3 и В4 – точки пересечения отрезков А1А2, А2А3, А3А4 и А4А1 с плоскостью α соответственно. Найдите  

ВверхВниз   Решение


Окружность S и точка O лежат в одной плоскости, причём O находится вне окружности. Построим произвольный шар, проходящий через окружность S, и опишем конус с вершиной в точке O и касающийся шара. Найти геометрическое место центров окружностей, по которым конусы касаются шаров.

ВверхВниз   Решение


Существует ли такое положительное число α, что при всех действительных x верно неравенство   |cos x| + |cos αx| > sin x + sin αx?

Вверх   Решение

Все задачи автора

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 105]      



Задача 116595

Тема:   [ Арифметическая прогрессия ]
Сложность: 2+
Классы: 8,9,10

Бесконечная возрастающая арифметическая прогрессия такова, что произведение каждых двух различных её членов – также член этой прогрессии. Докажите, что все её члены – целые числа.

Прислать комментарий     Решение

Задача 116600

Темы:   [ Турниры и турнирные таблицы ]
[ Сочетания и размещения ]
[ Простые числа и их свойства ]
Сложность: 3-
Классы: 8,9,10

В волейбольном турнире с участием 73 команд каждая команда сыграла с каждой по одному разу. В конце турнира все команды разделили на две непустые группы так, что каждая команда первой группы одержала ровно n побед, а каждая команда второй группы – ровно m побед. Могло ли оказаться, что  mn?

Прислать комментарий     Решение

Задача 116947

Темы:   [ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
Сложность: 3-
Классы: 8,9,10

Три натуральных числа таковы, что последняя цифра суммы любых двух из них является последней цифрой третьего числа. Произведение этих трёх чисел записали на доске, а затем всё, кроме трёх последних цифр этого произведения, стёрли. Какие три цифры могли остаться на доске?

Прислать комментарий     Решение

Задача 35697

Темы:   [ Векторы (прочее) ]
[ Центральная симметрия помогает решить задачу ]
[ Шахматные доски и шахматные фигуры ]
Сложность: 3
Классы: 9,10

Клетки доски 2001×2001 раскрашены в шахматном порядке в чёрный и белый цвета так, что угловые клетки чёрные. Для каждой пары разноцветных клеток рисуется вектор, идущий из центра чёрной клетки в центр белой. Докажите, что сумма нарисованных векторов равна 0.

Прислать комментарий     Решение

Задача 64777

Темы:   [ Тригонометрические неравенства ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 10,11

Существует ли такое положительное число α, что при всех действительных x верно неравенство   |cos x| + |cos αx| > sin x + sin αx?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 105]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .