Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 38]
|
|
Сложность: 5- Классы: 9,10,11
|
Контуры выпуклых многоугольников F и G не имеют общих точек, причём G расположен внутри F. Хорду многоугольника F – отрезок, соединяющий две точки контура F, назовём опорной для G, если она пересекается с G только по точкам контура: содержит либо только вершину, либо сторону G.
а) Докажите, что найдётся опорная хорда, середина которой принадлежит контуру G.
б) Докажите, что найдутся две такие хорды.
|
|
Сложность: 5- Классы: 9,10,11
|
На плоскости нарисовано некоторое семейство
S правильных треугольников,
получающихся друг из друга параллельными переносами, причем любые два
треугольника пересекаются. Докажите, что найдутся три точки такие, что
любой треугольник семейства
S содержит хотя бы одну из них.
|
|
Сложность: 5- Классы: 9,10,11
|
Даны два выпуклых многоугольника. Известно, что расстояние между
любыми двумя вершинами первого не больше
1
, расстояние между
любыми двумя вершинами второго также не больше 1, а расстояние между любыми двумя вершинами разных многоугольников больше,
чем
1
/ . Докажите, что многоугольники не имеют общих внутренних точек.
|
|
Сложность: 5- Классы: 9,10,11
|
В стране 2001 город, некоторые пары городов соединены дорогами, причём из
каждого города выходит хотя бы одна дорога и нет города, соединённого дорогами со всеми остальными. Назовём множество городов D доминирующим, если каждый не входящий в D город соединён дорогой с одним из городов множества D. Известно, что в каждом доминирующем множестве хотя бы k городов. Докажите, что страну можно разбить на 2001 – k республик так, что никакие два города из одной республики не будут соединены дорогой.
|
|
Сложность: 5- Классы: 9,10,11
|
В стране 2001 город, некоторые пары городов соединены дорогами, причём из
каждого города выходит хотя бы одна дорога и нет города, соединённого дорогами со всеми остальными. Назовём множество городов D доминирующим, если каждый не входящий в D город соединён дорогой с одним из городов множества D. Известно, что в каждом доминирующем множестве хотя бы k городов. Докажите, что страну можно разбить на 2001 – k республик так, что никакие два города из одной республики не будут соединены дорогой.
Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 38]