Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Евдокимов М.А.

Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Приведите пример числа, делящегося на 2020, в котором каждая из десяти цифр встречается одинаковое количество раз.

   Решение

Все задачи автора

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 145]      



Задача 66541

Темы:   [ Теория алгоритмов (прочее) ]
[ Правильные многогранники (прочее) ]
[ Раскраски ]
[ Перебор (прочее) ]
Сложность: 3
Классы: 6

а) Мальвина разбила каждую грань куба 2×2×2 на единичные квадраты и велела Буратино в некоторых квадратах написать крестики, а в остальных нолики так, чтобы каждый квадрат граничил по сторонам с двумя крестиками и двумя ноликами. На рисунке показано, как Буратино выполнил задание (видно только три грани). Докажите, что Буратино ошибся.

б) Помогите Буратино выполнить задание правильно. Достаточно описать хотя бы одну верную расстановку.
Прислать комментарий     Решение


Задача 66556

Тема:   [ Признаки делимости (прочее) ]
Сложность: 3
Классы: 8,9,10

Существует ли натуральное число, делящееся на 2020, в котором всех цифр 0, 1, 2, ..., 9 поровну?
Прислать комментарий     Решение


Задача 66562

Тема:   [ Многочлены (прочее) ]
Сложность: 3
Классы: 9,10,11

Приведите пример такого квадратного трехчлена $P(x)$, что при любом $x$ справедливо равенство $P(x)+P(x+1)+\dots + P(x+10)=x^2$.
Прислать комментарий     Решение


Задача 66568

Тема:   [ Теория чисел. Делимость ]
Сложность: 3
Классы: 8,9,10,11

Приведите пример числа, делящегося на 2020, в котором каждая из десяти цифр встречается одинаковое количество раз.
Прислать комментарий     Решение


Задача 66579

Тема:   [ Теория чисел. Делимость (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Барон Мюнхгаузен утверждает, что к любому двузначному числу можно справа приписать еще две цифры так, чтобы получился полный квадрат (к примеру, если задано число $10$, то дописываем $24$ и получаем $1024 = 32^2$). Прав ли барон?
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 145]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .