Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 36]
На плоской горизонтальной площадке стоят пять прожекторов, каждый из которых испускает лазерный луч под одним из двух острых углов α или β к площадке и может вращаться лишь вокруг вертикальной оси, проходящей через вершину луча. Известно, что любые четыре из этих прожекторов можно повернуть так, что все четыре испускаемых ими луча пересекутся в одной точке. Обязательно ли можно так повернуть все пять прожекторов, чтобы все пять лучей пересеклись в одной точке?
|
|
Сложность: 4- Классы: 10,11
|
Саша обнаружил, что на калькуляторе осталось ровно n исправных кнопок с цифрами. Оказалось, что любое натуральное число от 1 до 99999999 можно либо набрать, используя лишь исправные кнопки, либо получить как сумму двух натуральных чисел, каждое из которых можно набрать, используя лишь исправные кнопки. Каково наименьшее n, при котором это возможно?
|
|
Сложность: 4 Классы: 10,11
|
Можно ли четырьмя плоскостями разрезать куб с ребром 1 на части так, чтобы для каждой из частей расстояние между любыми двумя её точками было:
а) меньше 4/5;
б) меньше 4/7?
Предполагается, что все плоскости проводятся одновременно, куб и его части не двигаются.
|
|
Сложность: 4 Классы: 8,9,10,11
|
Три велосипедиста ездят в одном направлении по круглому треку длиной 300 метров. Каждый из них движется со своей постоянной скоростью, все скорости различны. Фотограф сможет сделать удачный снимок велосипедистов, если все они окажутся на каком-либо участке трека длиной d метров. При каком наименьшем d фотограф рано или поздно заведомо сможет сделать удачный снимок?
|
|
Сложность: 4 Классы: 8,9,10,11
|
Детектив Ниро Вульф расследует преступление. В деле замешаны 80 человек, среди которых один – преступник, еще один – свидетель преступления (но неизвестно, кто это). Каждый день детектив может пригласить к себе одного или нескольких из этих 80 человек, и если среди приглашенных есть свидетель, но нет преступника, то свидетель сообщит, кто преступник. Может ли детектив заведомо раскрыть дело за 12 дней?
Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 36]