ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В ряд стоят 15 слонов, каждый из которых весит целое число килограммов. Если взять любого слона, кроме стоящего справа, и прибавить к его весу удвоенный вес его правого соседа, то получится 15 тонн (для каждого из 14 слонов). Найдите вес каждого из 15 слонов. а) Докажите, что нельзя занумеровать рёбра куба числами 1, 2, ..., 11, 12 так, чтобы для каждой вершины сумма номеров трёх выходящих из неё рёбер была одной и той же. б) Можно ли вычеркнуть одно из чисел 1, 2, ..., 12, 13 и оставшимися занумеровать рёбра куба так, чтобы выполнялось то же условие? Улицы города расположены в трёх направлениях, так что все кварталы – равные между собой равносторонние треугольники. Правила уличного движения таковы, что через перекресток можно проехать либо прямо, либо повернув влево или вправо на 120° в ближайшую улицу. Поворачивать разрешается только на перекрёстках. Две машины выехали друг за другом из одной точки в одном направлении и едут с одинаковой скоростью, придерживаясь этих правил. Может ли случиться, что через некоторое время они на какой-то улице (не на перекрёстке) встретятся? Найдите все такие пары натуральных чисел x, y, что числа x³ + y и y³ + x делятся на x² + y². В числе A цифры идут в возрастающем порядке (слева направо). Чему равна сумма цифр числа 9· A ? Пятизначное число называется неразложимым, если оно не раскладывается в произведение двух трёхзначных чисел. Наибольший общий делитель натуральных чисел m и n равен 1. Каково наибольшее возможное значение НОД(m + 2000n, n + 2000m)? |
Страница: 1 2 >> [Всего задач: 10]
Два различных числа x и y (не обязательно целых) таковы, что x² – 2000x = y² – 2000y. Найдите сумму чисел x и y.
Натуральные числа m и n взаимно просты (не имеют общего делителя, отличного от единицы). Дробь
Наибольший общий делитель натуральных чисел m и n равен 1. Каково наибольшее возможное значение НОД(m + 2000n, n + 2000m)?
Найдите все пары целых чисел (x, y), для которых числа x³ + y и x + y³ делятся на x² + y².
Найдите все такие пары натуральных чисел x, y, что числа x³ + y и y³ + x делятся на x² + y².
Страница: 1 2 >> [Всего задач: 10]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке