Страница:
<< 1 2 3
4 5 >> [Всего задач: 22]
|
|
Сложность: 4+ Классы: 9,10,11
|
а) Есть неограниченный набор карточек со словами "abc", "bca", "cab". Из них составляют слово по такому правилу. В качестве начального слова выбирается любая карточка, а далее на каждом шаге к имеющемуся слову можно либо приклеить карточку слева или справа, либо разрезать слово в любом месте (между буквами) и вклеить карточку туда. Можно ли так составить палиндром?
б) Есть неограниченный набор красных карточек со словами "abc", "bca", "cab" и синих карточек со словами "cba", "acb", "bac". Из них по тем же правилам составили палиндром. Верно ли, что было использовано одинаковое количество красных и синих карточек?
|
|
Сложность: 4+ Классы: 8,9,10
|
а) Группа людей прошла опрос, состоящий из 20 вопросов, на каждый из которых возможно два ответа. После опроса оказалось, что для любых 10 вопросов и любой комбинации ответов на эти вопросы существует человек, давший именно эти ответы на эти вопросы. Обязательно ли найдутся два человека, у которых ответы ни на один вопрос не совпали?
б) Решите ту же задачу, если на каждый вопрос есть 12 вариантов ответа.
|
|
Сложность: 4+ Классы: 8,9,10
|
В школе решили провести турнир по настольному теннису между математическими и гуманитарными классами. Команда гуманитарных классов состоит из n человек, команда математических – из m, причём n ≠ m. Так как стол для игры всего один, было решено играть следующим образом. Сначала какие-то два ученика из разных команд начинают играть между собой, а все остальные участники выстраиваются в одну общую очередь. После каждой игры человек, стоящий в очереди первым, заменяет за столом члена своей команды, который становится в конец очереди. Докажите, что рано или поздно каждый математик сыграет с каждым гуманитарием.
|
|
Сложность: 4+ Классы: 10,11
|
а) Внутри сферы находится некоторая точка A. Через A провели три попарно перпендикулярные прямые, которые пересекли сферу в шести точках.
Докажите, что центр масс этих точек не зависит от выбора такой тройки прямых.
б) Внутри сферы находится икосаэдр, его центр A не обязательно совпадает с центром сферы. Лучи, выпущенные из A в вершины икосаэдра, высекают 12 точек на сфере. Икосаэдр повернули так, что его центр остался на месте. Теперь лучи высекают 12 новых точек.
Докажите, что их центр масс совпадает с центром масс старых 12 точек.
|
|
Сложность: 4+ Классы: 9,10
|
У Васи есть 100 банковских карточек. Вася знает, что на
одной из карточек лежит 1 рубль, на другой – 2 рубля, и так
далее, на последней – 100 рублей, но не знает, на какой из
карточек сколько денег. Вася может вставить карточку в банкомат и
запросить некоторую сумму. Банкомат выдает требуемую сумму, если
она на карточке есть, не выдает ничего, если таких денег на
карточке нет, а карточку съедает в любом случае. При этом банкомат
не показывает, сколько денег было на карточке. Какую наибольшую
сумму Вася может гарантированно получить?
Страница:
<< 1 2 3
4 5 >> [Всего задач: 22]