ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Шмаров В.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 1 2 [Всего задач: 9]      



Задача 116594

Темы:   [ Трапеции (прочее) ]
[ Вписанный угол, опирающийся на диаметр ]
[ Признаки подобия ]
[ Теорема синусов ]
Сложность: 4
Классы: 8,9,10

Автор: Шмаров В.

В трапеции ABCD боковая сторона CD перпендикулярна основаниям, O – точка пересечения диагоналей. На описанной окружности треугольника OCD взята точка S, диаметрально противоположная точке O. Докажите, что  ∠BSC = ∠ASD.

Прислать комментарий     Решение

Задача 116636

Темы:   [ Правильный (равносторонний) треугольник ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Вспомогательные равные треугольники ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 4
Классы: 8,9,10

Автор: Шмаров В.

Пусть ABC – правильный треугольник. На его стороне AC выбрана точка T, а на дугах AB и BC его описанной окружности выбраны точки M и N соответственно так, что  MT || BC  и  NT || AB.  Отрезки AN и MT пересекаются в точке X, а отрезки CM и NT – в точке Y. Докажите, что периметры многоугольников AXYC и XMBNY равны.

Прислать комментарий     Решение

Задача 116641

Темы:   [ Вневписанные окружности ]
[ Вспомогательная окружность ]
[ Радикальная ось ]
Сложность: 4
Классы: 8,9,10

Автор: Шмаров В.

Периметр треугольника ABC равен 4. На лучах AB и AC отмечены точки X и Y так, что  AX = AY = 1.  Отрезки BC и XY пересекаются в точке M. Докажите, что периметр одного из треугольников ABM и ACM равен 2.

Прислать комментарий     Решение

Задача 111867

Темы:   [ Гомотетия помогает решить задачу ]
[ Окружность Ферма-Аполлония ]
[ Гомотетичные окружности ]
[ Окружность, вписанная в угол ]
[ Описанные четырехугольники ]
[ Композиции гомотетий ]
Сложность: 6+
Классы: 9,10,11

Автор: Шмаров В.

Дан выпуклый четырёхугольник ABCD . Пусть P и Q – точки пересечения лучей BA и CD , BC и AD соответственно, а H – проекция D на PQ . Докажите, что четырёхугольник ABCD является описанным тогда и только тогда, когда вписанные окружности треугольников ADP и CDQ видны из точки H под равными углами.
Прислать комментарий     Решение


Страница: << 1 2 [Всего задач: 9]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .