ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Ивлев Ф.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 1 2 3 4 5 6 7 [Всего задач: 33]      



Задача 116284

Темы:   [ Трапеции (прочее) ]
[ Угол между касательной и хордой ]
[ Инверсия помогает решить задачу ]
[ Гомотетия помогает решить задачу ]
Сложность: 5-
Классы: 9,10,11

Автор: Ивлев Ф.

Боковые стороны AB и CD трапеции ABCD являются соответственно хордами окружностей ω1 и ω2, касающихся друг друга внешним образом. Градусные меры касающихся дуг AB и CD равны α и β. Окружности ω3 и ω4 также имеют хорды AB и CD соответственно. Их дуги AB и CD, расположенные с той же стороны от хорд, что соответствующие дуги первых двух окружностей, имеют градусные меры β и α. Докажите, что ω3 и ω4 тоже касаются.

Прислать комментарий     Решение

Задача 64471

Темы:   [ Вписанные и описанные окружности ]
[ Три прямые, пересекающиеся в одной точке ]
[ Преобразования плоскости (прочее) ]
[ Теорема синусов ]
Сложность: 5
Классы: 9,10,11

Автор: Ивлев Ф.

Вписанная в треугольник ABC окружность касается сторон BC, CA, AB в точках A', B', C' соответственно. Перпендикуляр, опущенный из центра I этой окружности на медиану CM, пересекает прямую A'B' в точке K. Докажите, что  CK || AB.

Прислать комментарий     Решение

Задача 116248

Темы:   [ Вписанные и описанные окружности ]
[ Радикальная ось ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 5
Классы: 9,10,11

Автор: Ивлев Ф.

Пусть I – центр вписанной окружности неравнобедренного треугольника ABC. Через A1 обозначим середину дуги BC описанной окружности треугольника ABC, не содержащей точки A, а через A2 – середину дуги BAC. Перпендикуляр, опущенный из точки A1 на прямую A2I, пересекает прямую BC в точке A'. Аналогично определяются точки B' и C'.
  а) Докажите, что точки A', B' и C' лежат на одной прямой.
  б) Докажите, что эта прямая перпендикулярна прямой OI, где O – центр описанной окружности треугольника ABC.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 [Всего задач: 33]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .