ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Действительные числа a, b, c, d таковы, что ab+ba=cd+dc. Докажите, что произведение каких-то двух чисел из a, b, c, d равно произведению двух других. На лицевой стороне каждой из 6 карточек Аня написала черным или красным фломастером по натуральному числу. При этом каждым цветом Аня написала хотя бы два числа. Затем Боря взял каждую карточку, посмотрел, каким цветом на ней написано число, перемножил все Анины числа того же цвета на других карточках и записал результат на обороте карточки (если другая карточка того же цвета всего одна, то Боря пишет число с этой одной карточки). Мы видим обороты, на которых написаны числа 18, 23, 42, 42, 47, 63. А что написано на лицевых сторонах этих карточек? Круг поделили хордой AB на два круговых сегмента и один из них повернули на некоторый угол вокруг точки A. При этом повороте точка B перешла в точку D (см. рис.). Докажите, что отрезки, соединяющие середины дуг сегментов с серединой отрезка BD, перпендикулярны друг другу. В прямоугольнике проведена ломаная, соседние звенья которой перпендикулярны и равны меньшей стороне прямоугольника (см. рис). |
Страница: 1 2 >> [Всего задач: 6]
Из шести костяшек домино (см. рис.) сложите прямоугольник 3×4 так, чтобы во всех трёх строчках точек было поровну и во всех четырёх столбцах точек было тоже поровну.
Незнайка не знает о существовании операций умножения и возведения в степень. Однако он хорошо освоил сложение, вычитание, деление и извлечение квадратного корня, а также умеет пользоваться скобками. Упражняясь, Незнайка выбрал три числа 20, 2 и 2 и составил выражение √(2+20):2. А может ли он, используя точно те же три числа 20, 2 и 2, составить выражение, значение которого больше 30?
Под одной из клеток доски 8×8 зарыт клад. Под каждой из остальных зарыта табличка, в которой указано, за какое наименьшее число шагов можно добраться из этой клетки до клада (одним шагом можно перейти из клетки в соседнюю по стороне клетку). Какое наименьшее число клеток надо перекопать, чтобы наверняка достать клад?
В прямоугольнике проведена ломаная, соседние звенья которой перпендикулярны и равны меньшей стороне прямоугольника (см. рис).
Существует ли шестиугольник, который можно разбить одной прямой на четыре равных треугольника?
Страница: 1 2 >> [Всего задач: 6]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке