Страница:
<< 10 11 12 13
14 15 16 >> [Всего задач: 79]
|
|
Сложность: 4 Классы: 7,8,9
|
В круговых автогонках участвовали четыре гонщика. Их машины стартовали одновременно из одной точки и двигались с постоянными скоростями. Известно, что после начала гонок для каждых трёх машин нашёлся момент, когда они встретились. Докажите, что после начала гонок найдётся момент, когда встретятся все четыре машины. (Гонки считаем бесконечно долгими по времени.)
|
|
Сложность: 4 Классы: 10,11
|
Bсе ребра правильной четырехугольной
пирамиды равны 1, а все вершины лежат на боковой поверхности
(бесконечного) прямого кругового цилиндра радиуса R.
Найдите все возможные значения R.
|
|
Сложность: 4 Классы: 10,11
|
Остроугольный треугольник ABC вписан в окружность ω. Касательные к ω, проведённые через точки B и C, пересекают касательную к ω, проведённую через точку A, в точках K и L соответственно. Прямая, проведённая через K параллельно AB, пересекается с прямой, проведённой через L параллельно AC, в точке P. Докажите, что BP = CP.
|
|
Сложность: 4 Классы: 9,10,11
|
Внутри треугольника $ABC$ на биссектрисе угла $A$ выбрана произвольная точка $J$. Лучи $BJ$ и $CJ$ пересекают стороны $AC$ и $AB$ в точках $K$ и $L$ соответственно. Касательная к описанной окружности треугольника $AKL$ в точке $A$ пересекает прямую $BC$ в точке $P$. Докажите, что $PA=PJ$.
|
|
Сложность: 4 Классы: 8,9,10,11
|
Возрастающая последовательность натуральных чисел $a_1 < a_2 < \dots$ такова, что при каждом
целом $n > 100$ число $a_n$ равно наименьшему натуральному числу, большему чем $a_{n-1}$ и не делящемуся ни на одно из
чисел $a_1, a_2, \dots, a_{n-1}$. Докажите, что в такой последовательности лишь конечное
количество составных чисел.
Страница:
<< 10 11 12 13
14 15 16 >> [Всего задач: 79]