Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 79]
Окружность, вписанная в угол с вершиной O касается
его сторон в точках A и B , K – произвольная точка
на меньшей из двух дуг AB этой окружности. На прямой OB
взята точка L такая, что прямые OA и KL параллельны.
Пусть M – точка пересечения окружности , описанной
около треугольника KLB , с прямой AK , отличная от K .
Докажите, что прямая OM касается окружности .
|
|
Сложность: 4+ Классы: 9,10
|
Натуральное число b назовём удачным, если для любого натурального a, такого, что a5 делится на b², число a² делится на b.
Найдите количество удачных натуральных чисел, меньших 2010.
|
|
Сложность: 5- Классы: 9,10,11
|
Четырёхугольник ABCD описан около окружности ω. Продолжения сторон AB и CD пересекаются в точке O. Окружность ω1 касается стороны BC в точке K и продолжений сторон AB и CD; окружность ω2 касается стороны AD в точке L и продолжений сторон AB и CD. Известно, что точки O, K и L лежат на одной прямой. Докажите, что середины сторон BC, AD и центр окружности ω лежат на одной прямой.
|
|
Сложность: 5- Классы: 8,9,10
|
В выпуклом четырёхугольнике ABCD провели биссектрисы la, lb, lc и ld внешних углов при
вершинах A, B, C и D соответственно. Точки пересечения прямых la и lb, lb и lc, lc и ld, ld и la обозначили через K, L, M и N. Известно, что три перпендикуляра, опущенных из точки K на AB, из L на BC, из M на CD пересекаются в одной точке. Докажите, что четырёхугольник ABCD – вписанный.
|
|
Сложность: 5 Классы: 10,11
|
В равнобедренном треугольнике $ABC$ ($AB=AC$) проведена высота $AA_0$.
Окружность $\gamma$ с центром в середине $AA_0$ касается прямых $AB$ и $AC$. Из точки $X$ прямой $BC$ проведены две касательные к $\gamma$.
Докажите, что эти касательные высекают на прямых $AB$ и $AC$ равные отрезки.
Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 79]