ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Илье Муромцу, Добрыне Никитичу и Алёше Поповичу за верную службу дали 6 монет: 3 золотых и 3 серебряных. Каждому досталось по две монеты. Илья Муромец не знает, какие монеты достались Добрыне, а какие Алёше, но знает, какие монеты достались ему самому. Придумайте вопрос, на который Илья Муромец ответит ''да'', ''нет'' или ''не знаю'', и по ответу на который Вы сможете понять, какие монеты ему достались.
|
Страница: 1 2 3 4 >> [Всего задач: 19]
Квадратный трёхчлен f(x) = ax2 + bx + c принимает в точках 1/a и c значения разных знаков.
На плоскости даны шесть точек. Известно, что их можно разбить на две тройки так, что получатся два треугольника. Всегда ли можно разбить эти точки на две тройки так, чтобы получились два треугольника, которые не имеют друг с другом никаких общих точек (ни внутри, ни на границе)?
На доске написано несколько натуральных чисел. Сумма любых двух из них – натуральная степень двойки.
Пусть C(n) – количество различных простых делителей числа n. (Например, C(10) = 2, C(11) = 1, C(12) = 2.)
Можно ли нарисовать 1006 различных 2012-угольников, у которых все вершины общие, но при этом ни у каких двух нет ни одной общей стороны?
Страница: 1 2 3 4 >> [Всего задач: 19]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке