Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 151]
|
|
Сложность: 3+ Классы: 9,10,11
|
Шесть равносторонних треугольников расположены, как на рисунке.
Докажите, что сумма площадей заштрихованных треугольников равна сумме площадей закрашенных треугольников.
Из одинаковых неравнобедренных прямоугольных треугольников составили прямоугольник (без дырок и наложений).
Обязательно ли какие-то два из этих треугольников расположены так, что образуют прямоугольник?
|
|
Сложность: 3+ Классы: 7,8,9
|
Будем называть клетчатый многоугольник выдающимся, если он не является прямоугольником и из нескольких его копий можно сложить подобный ему многоугольник. Например, уголок из трёх клеток – выдающийся многоугольник (см. рис.).
а) Придумайте выдающийся многоугольник из четырёх клеток.
б) При каких
n > 4 существует выдающийся многоугольник из
n клеток?
|
|
Сложность: 3+ Классы: 5,6,7
|
Аня захотела вписать в каждую клетку таблицы 5×8 по одной цифре таким образом, чтобы каждая цифра встречалась ровно в четырёх рядах. (Рядами мы
считаем как столбцы, так и строчки таблицы.) Докажите, что у неё ничего не получится.
|
|
Сложность: 3+ Классы: 5,6,7
|
Сорок детей водили хоровод. Из них 22 держали за руку мальчика и 30 держали за руку девочку. Сколько девочек было в хороводе?
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 151]