Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Бакаев Е.В.

Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

На стороне BC ромба ABCD выбрана точка M. Прямые, проведённые через M перпендикулярно диагоналям BD и AC, пересекают прямую AD в точках P и Q соответственно. Оказалось, что прямые PB, QC и AM пересекаются в одной точке. Чему может быть равно отношение  BM : MC?

Вниз   Решение


Треугольник ABC вписан в окружность с центром O. Прямые AC и BC вторично пересекают окружность, проходящую через точки A, O и B, в точках E и K. Докажите, что прямые OC и EK перпендикулярны.

ВверхВниз   Решение


Учитель продиктовал классу задание, которое каждый ученик выполнил в своей тетради. Вот это задание:

  Нарисуйте две концентрические окружности радиусов 1 и 10. К малой окружности проведите три касательные так, чтобы их точки пересечения A, B и C лежали внутри большой окружности. Измерьте площадь S треугольника ABC и площади SA, SB и SC трёх образовавшихся криволинейных треугольников с вершинами в точках A, B и C. Найдите  SA + SB + SC – S.

Докажите, что у всех учеников (если они правильно выполнили задание) получились одинаковые результаты.

Вверх   Решение

Все задачи автора

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 151]      



Задача 65103

Тема:   [ Разрезания на части, обладающие специальными свойствами ]
Сложность: 3+
Классы: 5,6,7

Разрежьте нарисованный шестиугольник на четыре одинаковые фигуры. Резать можно только по линиям сетки.

Прислать комментарий     Решение

Задача 65106

Тема:   [ Системы точек и отрезков. Примеры и контрпримеры ]
Сложность: 3+
Классы: 5,6,7

Во дворе, где проходят четыре пересекающиеся тропинки, растёт одна яблоня (см. план).

Посадите ещё три яблони так, чтобы по обе стороны от каждой тропинки было поровну яблонь.

Прислать комментарий     Решение

Задача 65108

Темы:   [ Текстовые задачи (прочее) ]
[ Правильный (равносторонний) треугольник ]
[ Равные треугольники. Признаки равенства ]
Сложность: 3+
Классы: 7,8

Смешарики живут на берегах пруда в форме равностороннего треугольника со стороной 600 м. Крош и Бараш живут на одном берегу в 300 м друг от друга. Летом Лосяшу до Кроша идти 900 м, Барашу до Нюши – тоже 900 м. Докажите, что зимой, когда пруд замёрзнет и можно будет ходить прямо по льду, Лосяшу до Кроша снова будет идти столько же метров, сколько Барашу до Нюши.

Прислать комментарий     Решение

Задача 65147

Темы:   [ Геометрия на клетчатой бумаге ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3+
Классы: 6,7

На сетке из равносторонних треугольников построен угол ACB (см. рисунок). Найдите его величину.

Прислать комментарий     Решение

Задача 65150

Темы:   [ Средняя линия треугольника ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3+
Классы: 8,9

На стороне AB треугольника ABC отметили точки K и L так, что  KL = BC  и  AK = LB.
Докажите, что отрезок KL виден из середины M стороны AC под прямым углом.

Прислать комментарий     Решение

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 151]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .