Страница:
<< 1 2
3 4 5 6 >> [Всего задач: 26]
|
|
Сложность: 4 Классы: 8,9,10,11
|
Существуют ли такие $2018$ положительных несократимых дробей с различными натуральными знаменателями, что знаменатель разности каждых двух из них (после приведения к несократимому виду) меньше знаменателя любой из исходных $2018$ дробей?
|
|
Сложность: 4 Классы: 8,9,10,11
|
В остроугольном треугольнике $ABC$ точки $O$ и $H$ – центр описанной окружности и ортоцентр соответственно, $AB < AC$. Прямая, проходящая через середину $K$ отрезка $AH$ и перпендикулярная $OK$, пересекает сторону $AB$ и касательную к описанной окружности в точке $A$ в точках $X$ и $Y$ соответственно. Докажите, что $\angle XOY=\angle AOB$.
|
|
Сложность: 4 Классы: 8,9,10,11
|
По кругу стоят буквы A и B, всего 41 буква.
Можно заменять ABA на B и наоборот, а также BAB на A и наоборот.
Верно ли, что из любого начального расположения можно получить такими операциями круг, на котором стоит ровно одна буква?
|
|
Сложность: 4 Классы: 8,9,10
|
Внутри остроугольного неравнобедренного треугольника $ABC$ отмечена точка $T$, такая что $\angle ATB = \angle BTC = 120^\circ$. Окружность с центром $E$ проходит через середины сторон треугольника $ABC$. Оказалось, что точки $B,T,E$ лежат на одной прямой. Найдите угол $ABC$.
|
|
Сложность: 4 Классы: 9,10,11
|
На плоскости проведены три прямые, образующие остроугольный неравнобедренный треугольник. Федя, у которого есть циркуль и линейка, хочет провести все высоты этого треугольника. Ваня с ластиком пытается ему помешать. За ход Федя проводит либо прямую через две отмеченные точки, либо окружность с центром в отмеченной точке, проходящую через другую отмеченную точку. После этого Федя отмечает любое количество точек (точки пересечения проведенных линий, случайные точки на проведенных линиях и случайные точки плоскости). Ваня за ход стирает не более трех отмеченных точек. (Федя не может использовать стертые точки в своих построениях, пока не отметит их снова). Ходят по очереди, начинает Федя. Изначально никакие точки плоскости не отмечены. Может ли Федя провести высоты?
Страница:
<< 1 2
3 4 5 6 >> [Всего задач: 26]