Страница:
<< 1 2 3
4 5 6 >> [Всего задач: 29]
|
|
Сложность: 4- Классы: 8,9,10
|
Дан остроугольный треугольник $ABC$. Точка $P$ выбрана так, что $AP=AB$ и $PB \parallel AC$. Точка $Q$ выбрана так, что $AQ=AC$ и $CQ \parallel AB$. Отрезки $CP$ и $BQ$ пересекаются в точке $X$. Докажите, что центр описанной окружности треугольника $ABC$ лежит на окружности $(PXQ)$.
|
|
Сложность: 4- Классы: 9,10,11
|
При каком наименьшем $k$ среди любых трёх ненулевых действительных чисел можно выбрать такие два числа $a$ и $b$, что |$a - b$| ≤ $k$ или
|1/a – 1/b| ≤ $k$?
|
|
Сложность: 4 Классы: 8,9,10,11
|
На улице дома стоят друг напротив друга, всего 50 пар. На правой стороне улицы расположены дома с чётными натуральными номерами, на левой – с нечётными натуральными номерами, номера возрастают от начала улицы к концу на каждой стороне, но идут не обязательно подряд (возможны пропуски). Для каждого дома на правой стороне улицы нашли разность между его номером и номером дома напротив, и оказалось, что все найденные числа различны. Наибольший номер дома на улице равен $n$. Найдите наименьшее возможное значение $n$.
|
|
Сложность: 4 Классы: 8,9,10,11
|
В стране рыцарей (всегда говорят правду) и лжецов (всегда лгут) за круглым столом сидят в вершинах правильного десятиугольника 10 человек, среди которых есть лжецы. Путешественник может встать куда-то и спросить сидящих: "Каково расстояние от меня до ближайшего лжеца из вас?" После этого каждый отвечает ему. Какое минимальное количество вопросов должен задать путешественник так, чтобы гарантированно узнать, кто за столом лжецы? (Посторонних рядом нет, на стол вставать нельзя. Людей считайте точками. Все, включая путешественника, могут точно измерить любое расстояние.)
|
|
Сложность: 4 Классы: 8,9,10,11
|
В виртуальном компьютерном государстве не менее двух городов. Некоторые пары городов соединены дорогой, причём из каждого города можно добраться по дорогам до любого другого (переходить с дороги на дорогу разрешается только в городах). Если при этом можно, начав движение из какого-то города и не проходя дважды по одной и той же дороге, вернуться в этот город, государство называется сложным, иначе – простым. Петя и Вася играют в такую игру. В начале игры Петя указывает на каждой дороге направление, в котором по ней можно двигаться, и помещает в один из городов туриста. Далее за ход Петя перемещает туриста по дороге в разрешённом направлении в соседний город, а Вася в ответ меняет направление одной из дорог, входящей или выходящей из города, куда попал турист. Вася победит, если в какой-то момент Петя не сможет сделать ход. Докажите, что
а) в простом государстве Петя может играть так, чтобы не проиграть, как бы ни играл Вася;
б) в сложном государстве Вася может гарантировать себе победу, как бы ни играл Петя.
Страница:
<< 1 2 3
4 5 6 >> [Всего задач: 29]