Страница:
<< 1 2 3
4 5 6 >> [Всего задач: 26]
Выпуклый n-угольник (n > 4) обладает таким свойством: если диагональ отсекает от него треугольник, то этот треугольник равнобедренный. Докажите, что среди любых
четырёх сторон этого n-угольника есть хотя бы две равных.
|
|
Сложность: 4 Классы: 9,10,11
|
Пусть $I$ – центр вписанной окружности треугольника $ABC$, а $K$ – точка пересечения $BC$ с внешней биссектрисой угла $A$. Прямая $KI$ пересекает внешние биссектрисы углов $B$ и $C$ в точках $X$ и $Y$. Докажите, что $\angle BAX=\angle CAY$.
|
|
Сложность: 4+ Классы: 9,10,11
|
В остроугольном неравнобедренном треугольнике ABC проведены медиана AM и высота AH. На прямых AB и AC отмечены точки Q и P соответственно так, что QM ⊥ AC и PM ⊥ AB. Описанная окружность треугольника PMQ пересекает прямую BC вторично в точке X. Докажите, что BH = CX.
|
|
Сложность: 5- Классы: 9,10,11
|
К вписанной окружности треугольника $ABC$ проведена касательная, параллельная $BC$. Она пересекает внешнюю биссектрису угла $A$ в точке $X$. Точка $Y$ – середина дуги $BAC$ описанной окружности. Докажите, что угол $XIY$ прямой.
|
|
Сложность: 5 Классы: 8,9,10,11
|
Есть 100 кучек по 400 камней в каждой. За ход Петя
выбирает две кучки, удаляет из них по одному камню и получает за это столько очков, каков теперь модуль разности
числа камней в этих двух кучках. Петя должен удалить все
камни. Какое наибольшее суммарное количество очков он
может при этом получить?
Страница:
<< 1 2 3
4 5 6 >> [Всего задач: 26]