Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Лифшиц Ю.

Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

На окружности отмечено 100 точек. Может ли при этом оказаться ровно 1000 прямоугольных треугольников, все вершины которых — отмеченные точки?

Вниз   Решение


В клетках первого столбца таблицы n×n записаны единицы, в клетках второго – двойки, ..., в клетках n-го – числа n. Числа на диагонали, соединяющей левое верхнее число с правым нижним, стёрли. Докажите, что суммы чисел по разные стороны от этой диагонали отличаются ровно в два раза.

ВверхВниз   Решение


На доске нарисовали выпуклый многоугольник. В нём провели несколько диагоналей, не пересекающихся внутри него, так что он оказался разбит на треугольники. Затем возле каждой вершины записали число треугольников, примыкающих к этой вершине, после чего все диагонали стерли. Можно ли по оставшимся возле вершин числам восстановить стёртые диагонали?

ВверхВниз   Решение


Играют двое. Первый выписывает в строку слева направо цифры, произвольно чередуя 0 и 1, пока цифр не станет всего 1999. Каждый раз после того, как первый выписал очередную цифру, второй меняет между собой две цифры из уже написанного ряда (когда написана только одна цифра, второй пропускает ход). Всегда ли второй может добиться того, чтобы после его последнего хода расположение цифр было симметричным относительно средней цифры?

ВверхВниз   Решение


Клетчатый бумажный квадрат 8×8 согнули несколько раз по линиям клеток так, что получился квадратик 1×1. Его разрезали по отрезку, соединяющему середины двух противоположных сторон квадратика. На сколько частей мог при этом распасться квадрат?

ВверхВниз   Решение


Можно ли внутри правильного пятиугольника разместить отрезок, который из всех вершин виден под одним и тем же углом?

ВверхВниз   Решение


Автор: Лифшиц Ю.

В клубе встретились двадцать джентльменов. Некоторые из них были в шляпах, а некоторые – без шляп. Время от времени один из джентльменов снимал с себя шляпу и надевал её на одного из тех, у кого в этот момент шляпы не было. В конце десять джентльменов подсчитали, что каждый из них отдавал шляпу большее количество раз, чем получал. Сколько джентльменов пришли в клуб в шляпах?

Вверх   Решение

Все задачи автора

Страница: 1 2 3 >> [Всего задач: 11]      



Задача 111248

Темы:   [ Турниры и турнирные таблицы ]
[ Четность и нечетность ]
[ Доказательство от противного ]
Сложность: 3
Классы: 7,8,9

Автор: Лифшиц Ю.

Шестнадцать футбольных команд из шестнадцати стран провели турнир – каждая команда сыграла с каждой из остальных по одному матчу.
Могло ли оказаться так, что каждая команда сыграла во всех странах, кроме своей родины?

Прислать комментарий     Решение

Задача 64379

Тема:   [ Процессы и операции ]
Сложность: 3+
Классы: 6,7

Автор: Лифшиц Ю.

В клубе встретились двадцать джентльменов. Некоторые из них были в шляпах, а некоторые – без шляп. Время от времени один из джентльменов снимал с себя шляпу и надевал её на одного из тех, у кого в этот момент шляпы не было. В конце десять джентльменов подсчитали, что каждый из них отдавал шляпу большее количество раз, чем получал. Сколько джентльменов пришли в клуб в шляпах?

Прислать комментарий     Решение

Задача 110107

Темы:   [ Таблицы и турниры (прочее) ]
[ Раскраски ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 7,8,9

Автор: Лифшиц Ю.

Клетки квадрата 9×9 окрашены в красный и белый цвета. Докажите, что найдётся или клетка, у которой ровно два красных соседа по углу, или клетка, у которой ровно два белых соседа по углу (или и то, и другое).

Прислать комментарий     Решение

Задача 108213

Темы:   [ Правильный (равносторонний) треугольник ]
[ Доказательство от противного ]
[ Три точки, лежащие на одной прямой ]
Сложность: 4-
Классы: 7,8,9

Автор: Лифшиц Ю.

Дан треугольник ABC с попарно различными сторонами. На его сторонах построены внешним образом правильные треугольники ABC1, BCA1 и CAB1. Докажите, что треугольник A1B1C1 не может быть правильным.

Прислать комментарий     Решение

Задача 110064

Темы:   [ Уравнения в целых числах ]
[ Раскраски ]
[ Деление с остатком ]
Сложность: 4-
Классы: 7,8,9,10

Автор: Лифшиц Ю.

Опишите все способы покрасить каждое натуральное число в один из трёх цветов так, чтобы выполнялось условие: если числа a, b и c (не обязательно различные) удовлетворяют условию  2000(a + b) = c,  то они либо все одного цвета, либо трёх разных цветов.

Прислать комментарий     Решение

Страница: 1 2 3 >> [Всего задач: 11]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .