Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Мартынов П.

Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Четырёхугольник ABCD с попарно непараллельными сторонами описан около окружности с центром O. Докажите, что точка O совпадает с точкой пересечения средних линий четырёхугольника ABCD тогда и только тогда, когда  OA·OC = OB·OD.

Вниз   Решение


Автор: Иванов С.

Дан треугольник ABC. Точки A1, B1 и C1 – середины сторон BC, AC и AB соответственно. На продолжении отрезка C1B1 отложен отрезок B1K по длине равный . Известно, AA1 = BC. Докажите, что AB = BK.

ВверхВниз   Решение


Натуральное число n таково, что числа  2n + 1  и  3n + 1  являются квадратами. Может ли при этом число  5n + 3  быть простым?

ВверхВниз   Решение


Автор: Гарбер А.

Известно, что многочлен  (x + 1)n – 1  делится на некоторый многочлен  P(x) = xk + ck–1xk–1 + ck–2xk–2 + ... + c1x + c0  чётной степени k, у которого все коэффициенты – целые нечётные числа. Докажите, что n делится на  k + 1.

ВверхВниз   Решение


Найдите какие-нибудь четыре попарно различных натуральных числа a, b, c, d, для которых числа  a² + 2cd + b²  и  c² + 2ab + d²  являются полными квадратами.

ВверхВниз   Решение


В треугольнике ABC биссектриса угла C пересекает сторону AB в точке M, а биссектриса угла A пересекает отрезок CM в точке T. Оказалось, что отрезки CM и AT разбили треугольник ABC на три равнобедренных треугольника. Найдите углы треугольника ABC.

Вверх   Решение

Все задачи автора

Страница: 1 [Всего задач: 4]      



Задача 116663

Темы:   [ Обыкновенные дроби ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 6,7,8

Записаны шесть положительных несократимых дробей, сумма числителей которых равна сумме их знаменателей. Паша перевёл каждую из неправильных дробей в смешанное число. Обязательно ли найдутся два числа, у которых одинаковы либо целые части, либо дробные части?

Прислать комментарий     Решение

Задача 116667

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3
Классы: 7,8

В треугольнике ABC биссектриса угла C пересекает сторону AB в точке M, а биссектриса угла A пересекает отрезок CM в точке T. Оказалось, что отрезки CM и AT разбили треугольник ABC на три равнобедренных треугольника. Найдите углы треугольника ABC.

Прислать комментарий     Решение

Задача 116669

Тема:   [ Процессы и операции ]
Сложность: 3
Классы: 5,6,7

На складах двух магазинов хранится пшено: на первом складе на 16 тонн больше, чем на втором. Каждую ночь ровно в полночь владелец каждого магазина ворует у своего конкурента четверть имеющегося на его складе пшена и перетаскивает на свой склад. Через 10 ночей воришек поймали. На каком складе в момент их поимки было больше пшена и на сколько?

Прислать комментарий     Решение

Задача 110220

Темы:   [ Выигрышные и проигрышные позиции ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 6,7,8

Двое играют в такую игру. В начале по кругу стоят числа 1, 2, 3, 4. Каждым своим ходом первый прибавляет к двум соседним числам по 1, а второй меняет любые два соседних числа местами. Первый выигрывает, если все числа станут равными. Может ли второй ему помешать?

Прислать комментарий     Решение

Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .