Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Кудря С.О.

Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Дан выпуклый многогранник и точка $K$, не принадлежащая ему. Для каждой точки $M$ многогранника строится шар с диаметром $MK$. Докажите, что в многограннике существует единственная точка, принадлежащая всем таким шарам.

Вниз   Решение


Автор: Saghafian M.

Мортеза отметил на плоскости шесть точек и нашел площади всех 20 треугольников с вершинами в этих точках. Может ли оказаться, что все полученные числа целые, а их сумма равна 2019?

ВверхВниз   Решение


Существуют ли такие
  а) 4 различных натуральных числа;
  б) 5 различных натуральных чисел;
  в) 5 различных целых чисел;
  г) 6 различных целых чисел,
что сумма каждых трёх из них – простое число?

ВверхВниз   Решение


Имеется 21 ненулевое число. Для каждых двух из них вычислены их сумма и произведение. Оказалось, что половина всех сумм положительна и половина – отрицательна. Каково наибольшее возможное количество положительных произведений?

Вверх   Решение

Все задачи автора

Страница: 1 [Всего задач: 1]      



Задача 66330

Тема:   [ Комбинаторика (прочее) ]
Сложность: 3+
Классы: 8,9,10,11

Имеется 21 ненулевое число. Для каждых двух из них вычислены их сумма и произведение. Оказалось, что половина всех сумм положительна и половина – отрицательна. Каково наибольшее возможное количество положительных произведений?

Прислать комментарий     Решение

Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .