ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Кухарчук И.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 2 3 4 >> [Всего задач: 19]      



Задача 66769

Темы:   [ Вписанные четырехугольники ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3
Классы: 8,9,10,11

В треугольнике $ABC$ $AA_1$, $CC_1$ – высоты, $P$ – произвольная точка на стороне $BC$. Точка $Q$ на прямой $AB$ такова, что $QP=PC_1$, а точка $R$ на прямой $AC$ такова, что $RP=CP$. Докажите, что четырехугольник $QA_1RA$ вписанный.
Прислать комментарий     Решение


Задача 66945

Темы:   [ Признаки и свойства параллелограмма ]
[ Вспомогательные равные треугольники ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 3
Классы: 8,9

В параллелограмме $ABCD$ точки $E$ и $F$ выбираются на сторонах $BC$ и $AD$ соответственно так, что $EF=ED=DC$. Пусть $M$ – середина $BE$, а $MD$ пересекает $EF$ в точке $G$. Докажите, что углы $EAC$ и $GBD$ равны.
Прислать комментарий     Решение


Задача 67110

Темы:   [ Признаки и свойства параллелограмма ]
[ Ромбы. Признаки и свойства ]
[ Симметрия помогает решить задачу ]
Сложность: 3
Классы: 7,8,9

Выпуклый четырехугольник $ABCD$ таков, что $\angle BAD = 2 \angle BCD$ и $AB = AD$. Пусть $P$ – такая точка, что $ABCP$ – параллелограмм. Докажите, что $CP=DP$.
Прислать комментарий     Решение


Задача 66937

Тема:   [ Симметрия помогает решить задачу ]
Сложность: 3
Классы: 8,9,10,11

Дан прямоугольный треугольник $ABC$ с прямым углом $C$. Прямая проходящая через середину его высоты $CH$ и вершину $A$ пересекает $CB$ в точке $K$. Пусть $L$ – середина $BC$, а $T$ – точка на отрезке $AB$ такая, что $\angle ATK=\angle LTB$. Известно, что $BC=1$. Найдите периметр треугольника $KTL$.
Прислать комментарий     Решение


Задача 67117

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Симметрия помогает решить задачу ]
[ Вписанные и описанные многоугольники ]
Сложность: 3
Классы: 8,9,10,11

Дана равнобокая трапеция $ABCD$ ($AB=CD$). На описанной около неё окружности выбирается точка $P$ так, что отрезок $CP$ пересекает основание $AD$ в точке $Q$. Пусть $L$ – середина $QD$. Докажите, что длина диагонали трапеции не превосходит суммы расстояний от середин её боковых сторон до любой точки прямой $PL$.
Прислать комментарий     Решение


Страница: 1 2 3 4 >> [Всего задач: 19]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .