Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Шатунов Л.

Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Шатунов Л.

Дан описанный четырёхугольник $ABCD$ с тупым углом $ABC$. Лучи $AB$ и $DC$ пересекаются в точке $P$, а лучи $DA$ и $CB$  – в точке $Q$. Докажите, что $|AD - CD| \geq |r_1 - r_2|$, где $r_1$ и $r_2$  – радиусы вписанных окружностей треугольников $PBC$ и $QAB$.

   Решение

Все задачи автора

Страница: 1 2 >> [Всего задач: 7]      



Задача 67313

Темы:   [ Описанные четырехугольники ]
[ Вписанные и описанные окружности ]
[ Четырехугольник (неравенства) ]
Сложность: 4-
Классы: 9,10,11

Автор: Шатунов Л.

Дан описанный четырёхугольник $ABCD$ с тупым углом $ABC$. Лучи $AB$ и $DC$ пересекаются в точке $P$, а лучи $DA$ и $CB$  – в точке $Q$. Докажите, что $|AD - CD| \geq |r_1 - r_2|$, где $r_1$ и $r_2$  – радиусы вписанных окружностей треугольников $PBC$ и $QAB$.
Прислать комментарий     Решение


Задача 67364

Темы:   [ Теоремы Чевы и Менелая ]
[ Радикальная ось ]
Сложность: 4
Классы: 8,9,10,11

Автор: Шатунов Л.

Дан выпуклый четырехугольник $ABCD$. Прямая $l \parallel AC$ пересекает прямые $AD, BC, AB, CD$ в точках $X, Y, Z, T$. Описанные окружности треугольников $XYB$ и $ZTB$ вторично пересекаются в точке $R$. Докажите, что $R$ лежит на прямой $BD$.
Прислать комментарий     Решение


Задача 67353

Темы:   [ Теорема синусов ]
[ Формулы для площади треугольника ]
Сложность: 4
Классы: 9,10,11

Автор: Шатунов Л.

Через вершины $A$, $B$, $C$ треугольника $ABC$ провели прямые $a_1, b_1, c_1$ соответственно. Отразим $a_1$, $b_1$, $c_1$ относительно биссектрис соответствующих углов треугольника $ABC$, получив $a_2$, $b_2$, $c_2$. Пусть $A_1=b_1\cap c_1$, $B_1=a_1\cap c_1$, $C_1=a_1\cap b_1$, аналогично определим $A_2$, $B_2$, $C_2$. Докажите, что у треугольников $A_1B_1C_1$ и $A_2B_2C_2$ одинаковое отношение площади к радиусу описанной окружности (т.е. $\frac{S_1}{R_1}=\frac{S_2}{R_2}$, где $S_i=S(\triangle A_iB_iC_i)$, $R_i=R(\triangle A_iB_iC_i)$).
Прислать комментарий     Решение


Задача 67318

Темы:   [ Свойства коэффициентов многочлена ]
[ Индукция (прочее) ]
[ Теория чисел. Делимость (прочее) ]
Сложность: 4+
Классы: 8,9,10,11

Автор: Шатунов Л.

Дан многочлен степени $n \geqslant 1$ с целыми ненулевыми коэффициентами, каждый из которых является его корнем. Докажите, что модули коэффициентов этого многочлена не превосходят 2.
Прислать комментарий     Решение


Задача 67368

Темы:   [ Изогональное сопряжение ]
[ Прямая Гаусса ]
[ Теоремы Чевы и Менелая ]
[ Радикальная ось ]
Сложность: 4+
Классы: 9,10,11

Пусть $(P,P')$ и $(Q,Q')$ – две пары точек, изогонально сопряженных относительно треугольника $ABC$, $R$ – точка пересечения прямых $PQ$ и $P'Q'$. Докажите, что педальные окружности точек $P$, $Q$ и $R$ соосны.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .