ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На доске написано число 1. Если на доске написано число а, его можно заменить любым числом вида a + d, где d взаимно просто с а и 10 ≤ d ≤ 20. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]
Разрежьте по клеточкам квадрат 7×7 на девять прямоугольников (не обязательно различных), из которых можно будет сложить любой прямоугольник со сторонами, не превосходящими 7.
На столе лежат 7 карточек с цифрами от 0 до 6. Двое по очереди берут по одной карточке. Выигрывает тот, кто впервые из своих карточек сможет составить натуральное число, делящееся на 17. Кто выиграет при правильной игре – начинающий или его противник?
На доске написано число 1. Если на доске написано число а, его можно заменить любым числом вида a + d, где d взаимно просто с а и 10 ≤ d ≤ 20.
На плоскости отметили все вершины правильного n-угольника, а также его центр. Затем нарисовали контур этого n-угольника, и центр соединили со всеми вершинами; в итоге n-угольник разбился на n треугольников. Вася записал в каждую отмеченную точку по числу (среди чисел могут быть равные). В каждый треугольник разбиения он записал в произвольном порядке три числа, стоящих в его вершинах; после этого он стёр числа в отмеченных точках. При каких n по тройкам чисел, записанным в треугольниках, Петя всегда сможет восстановить число в каждой отмеченной точке?
Квадрат 8×8 клеток выкрашен в белый цвет. Разрешается выбрать в нём любой прямоугольник из трёх клеток и перекрасить все их в противоположный цвет (белые в чёрный, чёрные – в белый). Удастся ли несколькими такими операциями перекрасить весь квадрат в чёрный цвет?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке