ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() Валерий Анатольевич Сендеров (1945 - 2014 гг.) - математик, педагог, с 70-х годов - постоянный участник проведения московских и российских математических олимпиад. Автор нескольких десятков научных статей в отечественных и зарубежных изданиях, научно-популярных работ в журнале Квант. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Сумма кубов трёх последовательных натуральных чисел оказалась кубом натурального числа. Докажите, что среднее из этих трёх чисел делится на 4. В выражении (x4 + x³ – 3x² + x + 2)2006 раскрыли скобки и привели подобные слагаемые.
Существуют ли действительные числа a , b и c такие, что при
всех действительных x и y выполняется неравенство
На вертикальную ось надели несколько колес со спицами. Вид сверху
изображен на левом рисунке.
После этого колеса повернули. Новый вид сверху изображен на рисунке справа. Могло ли колес быть: а) три; б) два? Плоская выпуклая фигура ограничена отрезками AB и AD и дугой BD некоторой окружности (рис.1). Постройте какую-нибудь прямую, которая делит пополам: а) периметр этой фигуры; б) её площадь. |
Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 90]
Плоская выпуклая фигура ограничена отрезками AB и AD и дугой BD некоторой окружности (рис.1). Постройте какую-нибудь прямую, которая делит пополам: а) периметр этой фигуры; б) её площадь.
Найдите наименьшее натуральное число, не представимое в виде
Сумма кубов трёх последовательных натуральных чисел оказалась кубом натурального числа. Докажите, что среднее из этих трёх чисел делится на 4.
Существуют ли действительные числа a , b и c такие, что при
всех действительных x и y выполняется неравенство
При каких натуральных n найдутся такие положительные рациональные, но не целые числа a и b, что оба числа a + b и an + bn – целые?
Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 90]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке