Страница:
<< 12 13 14 15 16 17 18 [Всего задач: 90]
|
|
Сложность: 5 Классы: 8,9,10,11
|
Натуральные числа x, y, z (x > 2, y > 1) таковы, что xy + 1 = z².
Обозначим через p количество различных простых делителей числа x, через q – количество различных простых делителей числа y. Докажите, что p ≥ q + 2.
|
|
Сложность: 5 Классы: 10,11
|
Докажите, что
sin< при
0
<x< .
|
|
Сложность: 5 Классы: 9,10,11
|
На окружности расположена тысяча непересекающихся дуг, и на каждой из них
написаны два натуральных числа. Сумма чисел каждой дуги делится на произведение чисел дуги, следующей за ней по часовой стрелке. Каково наибольшее возможное
значение наибольшего из написанных чисел?
|
|
Сложность: 5+ Классы: 9,10,11
|
Пусть
M={x1, .., x30
} – множество, состоящее из 30 различных положительных
чисел;
An (
1
n 30
) – сумма всевозможных произведений различных
n элементов
множества
M . Докажите, что если
A15
>A10
, то
A1>1
.
|
|
Сложность: 6+ Классы: 10,11
|
При каких натуральных
n для любых чисел
α ,
β ,
γ ,
являющихся величинами углов остроугольного треугольника, справедливо неравенство
sin nα + sin nβ + sin nγ<0?
Страница:
<< 12 13 14 15 16 17 18 [Всего задач: 90]