ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Из точки M внутри четырёхугольника ABCD опущены перпендикуляры на стороны. Основания перпендикуляров лежат внутри сторон. Обозначим эти основания: то, которое лежит на стороне AB — через X, лежащее на стороне BC — через Y, лежащее на стороне CD — через Z, лежащее на стороне DA — через T. Известно, что AX ≥ XB, BY ≥ YC, CZ ≥ ZD, DT ≥ TA. Докажите, что вокруг четырёхугольника ABCD можно описать окружность. Основание пирамиды – квадрат. Высота пирамиды пересекает диагональ основания. Найдите наибольший объём такой пирамиды, если периметр диагонального сечения, содержащего высоту пирамиды, равен 5. |
Страница: 1 2 3 4 5 >> [Всего задач: 23]
Найдутся ли натуральные числа x, y и z, удовлетворяющие условию 28x + 30y + 31z = 365?
Является ли число 49 + 610 + 320 простым?
Можно ли найти восемь таких натуральных чисел, что ни одно из них не делится ни на какое другое, но квадрат любого из этих чисел делится на каждое из остальных?
Некоторые из чисел a1, a2, ..., a200 написаны синим карандашом, а остальные — красным. Если стереть все красные числа, то останутся все натуральные числа от 1 до 100, записанные в порядке возрастания. Если же стереть все синие числа, то останутся все натуральные числа от 100 до 1, записанные в порядке убывания. Докажите, что среди чисел a1, a2, ..., a100 содержатся все натуральные числа от 1 до 100 включительно.
Путешественник посетил деревню, в котором каждый человек либо всегда говорит правду, либо всегда лжёт. Жители деревни стали в круг, и каждый сказал путешественнику про соседа справа, правдив ли он. На основании этих сообщений путешественник смог однозначно определить, какую долю от всех жителей деревни составляют лжецы. Определите и вы, чему она равна.
Страница: 1 2 3 4 5 >> [Всего задач: 23]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке