ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Классы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи а) Какое максимальное количество слонов можно расставить на
доске 1000 на 1000 так, чтобы они не били друг друга? Какое максимальное число шашек можно расставить на доске 8×8 так, чтобы каждая была под боем? |
Страница: 1 2 3 >> [Всего задач: 12]
Биссектриса угла B и биссектриса внешнего угла D прямоугольника
ABCD пересекают сторону AD и прямую AB в точках M и
K соответственно.
B равнобедренном треугольнике ABС на боковой стороне BС отмечена точка M так, что отрезок MС равен высоте треугольника, проведённой к этой стороне, а на боковой стороне AB отмечена точка K так, что угол KMС – прямой. Hайдите угол ACK.
Из листа бумаги в клетку вырезали квадрат 2×2.
Прямая a пересекает плоскость α. Известно, что в этой плоскости найдутся 2011 прямых, равноудаленных от a и не пересекающих a.
B трапеции ABCD AB = BC = CD, CH – высота. Докажите, что перпендикуляр, опущенный из H на AC, проходит через середину BD.
Страница: 1 2 3 >> [Всего задач: 12]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке