ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

На столе лежат две стопки монет: в одной из них 30 монет, а в другой - 20. За ход разрешается взять любое количество монет из одной стопки. Проигрывает тот, кто не сможет сделать ход. Кто из игроков выигрывает при правильной игре?

Вниз   Решение


Докажите, что  $ {\frac{1}{r^3}}$ - $ {\frac{1}{r_a^3}}$ - $ {\frac{1}{r_b^3}}$ - $ {\frac{1}{r_c^3}}$ = $ {\frac{12R}{S^2}}$.

ВверхВниз   Решение


а) Из произвольной точки M внутри правильного n-угольника проведены перпендикуляры  MK1, MK2, ..., MKn  к его сторонам (или их продолжениям). Докажите, что      (O – центр n-угольника).

б) Докажите, что сумма векторов, проведённых из любой точки M внутри правильного тетраэдра перпендикулярно к его граням, равна     где O – центр тетраэдра.

Вверх   Решение

Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 7526]      



Задача 108797

Тема:   [ Правильный тетраэдр ]
Сложность: 2
Классы: 8,9

Найдите высоту правильного тетраэдра с ребром a .
Прислать комментарий     Решение


Задача 108798

Темы:   [ Правильный тетраэдр ]
[ Объем тетраэдра и пирамиды ]
Сложность: 2
Классы: 8,9

Найдите объём правильного тетраэдра с ребром, равным a .
Прислать комментарий     Решение


Задача 108799

Тема:   [ Правильный тетраэдр ]
Сложность: 2
Классы: 8,9

Найдите площадь полной поверхности правильного тетраэдра с ребром, равным a .
Прислать комментарий     Решение


Задача 108805

Тема:   [ Линейные зависимости векторов ]
Сложность: 2
Классы: 8,9

Все рёбра правильной четырёхугольной пирамиды равны a . Найдите высоту пирамиды.
Прислать комментарий     Решение


Задача 108806

Темы:   [ Линейные зависимости векторов ]
[ Объем тетраэдра и пирамиды ]
Сложность: 2
Классы: 8,9

Все рёбра правильной четырёхугольной пирамиды равны a . Найдите объём пирамиды.
Прислать комментарий     Решение


Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 7526]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .