ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Кружки, факультативы, спецкурсы:
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

По кругу посажены 19 кустов ландышей.
  а) Докажите, что обязательно найдутся два соседних куста, общее количество колокольчиков на которых чётно.
  б) Всегда ли можно найти два соседних куста, общее количество колокольчиков на которых кратно 3?

Вниз   Решение


Числа a1, a2, ..., a1985 представляют собой переставленные в некотором порядке числа 1, 2, ..., 1985. Каждое число ak умножается на его номер k, а затем среди полученных 1985 произведений выбирается наибольшее. Доказать, что оно не меньше, чем 993².

Вверх   Решение

Задачи

Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 644]      



Задача 32924

Темы:   [ Задачи на смеси и концентрации ]
[ Инварианты ]
Сложность: 2+
Классы: 7

Из бочки с водой в бочку с вином перелили стакан воды. Потом передумали и перелили обратно стакан вина. Чего больше: вина в воде или воды в вине?

Прислать комментарий     Решение

Задача 32925

Темы:   [ Задачи на проценты и отношения ]
[ Парадоксы ]
Сложность: 2+
Классы: 7

Свежий арбуз весил 10 килограмм и на 99% состоял из воды. На базе арбуз подсох (часть воды испарилась) и в нем стало 98% воды.
Сколько он теперь весит?

Прислать комментарий     Решение

Задача 32984

Тема:   [ Уравнения в целых числах ]
Сложность: 2+
Классы: 8

Жители города Глупова пользуются купюрами только в 35 и 80 тыров. Сможет ли рассчитаться продавец с покупателем, который хочет купить
  a) шоколадку за 57 тыров;
  б) булочку за 15 тыров?

Прислать комментарий     Решение

Задача 32986

Темы:   [ Признаки делимости (прочее) ]
[ Делимость чисел. Общие свойства ]
[ Произведения и факториалы ]
Сложность: 2+
Классы: 7,8,9

Найдите самое маленькое k, при котором k! делится на 2040.

Прислать комментарий     Решение

Задача 32989

Темы:   [ Арифметика остатков (прочее) ]
[ Разбиения на пары и группы; биекции ]
[ Разложение на множители ]
Сложность: 2+
Классы: 7,8,9

Докажите, что  1 + 277 + 377 + ... + 199677  делится на 1997.

Прислать комментарий     Решение

Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 644]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .