ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

   а) На постоялом дворе остановился путешественник, и хозяин согласился в качестве уплаты за проживание брать кольца золотой цепочки, которую тот носил на руке. Но при этом он поставил условие, чтобы оплата была ежедневной: каждый день хозяин должен был иметь на одно кольцо больше, чем в предыдущий. Замкнутая в кольцо цепочка содержала 11 колец, а путешественник собирался прожить ровно 11 дней, поэтому он согласился. Какое наименьшее число колец он должен распилить, чтобы иметь возможность платить хозяину?

   б) Из скольких колец должна состоять цепочка, чтобы путешественник мог прожить на постоялом дворе наибольшее число дней при условии, что он может распилить только n колец?

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 32]      



Задача 108144  (#01.4.9.3)

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Две пары подобных треугольников ]
[ Признаки и свойства параллелограмма ]
Сложность: 4-
Классы: 8,9

В параллелограмме ABCD на сторонах AB и BC выбраны точки M и N соответственно, причём  AM = CN,  Q – точка пересечения отрезков AN и CM.
Докажите, что DQ – биссектриса угла D.

Прислать комментарий     Решение

Задача 110072  (#01.4.9.4)

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Геометрия на клетчатой бумаге ]
Сложность: 4-
Классы: 7,8,9

Автор: Лифшиц Ю.

Мишень представляет собой треугольник, разбитый тремя семействами параллельных прямых на 100 равных правильных треугольничков с единичными сторонами. Снайпер стреляет по мишени. Он целится в треугольничек и попадает либо в него, либо в один из соседних с ним по стороне. Он видит результаты своей стрельбы и может выбирать, когда стрельбу заканчивать. Какое наибольшее число треугольничков он может с гарантией поразить ровно пять раз?
Прислать комментарий     Решение


Задача 108219  (#01.4.9.5)

Темы:   [ Пятиугольники ]
[ Принцип Дирихле (прочее) ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 4
Классы: 7,8,9

Внутри выпуклого пятиугольника выбраны две точки. Докажите, что можно выбрать четырёхугольник с вершинами в вершинах пятиугольника так, что внутрь него попадут обе выбранные точки.
Прислать комментарий     Решение


Задача 110074  (#01.4.9.6)

Темы:   [ Делимость чисел. Общие свойства ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Количество и сумма делителей числа ]
Сложность: 4-
Классы: 7,8,9

Автор: Храбров А.

Существует ли такое натуральное число, что произведение всех его натуральных делителей (включая 1 и само число) оканчивается ровно на 2001 ноль?

Прислать комментарий     Решение

Задача 108220  (#01.4.9.7)

Темы:   [ Угол между касательной и хордой ]
[ Вспомогательная окружность ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4+
Классы: 8,9

Окружность, вписанная в угол с вершиной O касается его сторон в точках A и B , K – произвольная точка на меньшей из двух дуг AB этой окружности. На прямой OB взята точка L такая, что прямые OA и KL параллельны. Пусть M – точка пересечения окружности , описанной около треугольника KLB , с прямой AK , отличная от K . Докажите, что прямая OM касается окружности .
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 32]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .