ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
года:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 381]      



Задача 103809

Темы:   [ Правило произведения ]
[ Мощность множества. Взаимно-однозначные отображения ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 2+
Классы: 7

Сколькими способами можно прочитать в таблице слово
  а)  КРОНА,
  б)  КОРЕНЬ,
начиная с буквы "K" и двигаясь вправо или вниз?

Прислать комментарий     Решение

Задача 103813

Тема:   [ Обыкновенные дроби ]
Сложность: 2+
Классы: 6

В папирусе Ринда (Древний Египет) среди прочих сведений содержатся разложения дробей в сумму дробей с числителем 1, например,
2/73 = 1/60 + 1/219 + 1/292 + 1/x. Один из знаменателей здесь заменён буквой x. Найдите этот знаменатель.

Прислать комментарий     Решение

Задача 103842

Темы:   [ Обыкновенные дроби ]
[ Числовые неравенства. Сравнения чисел. ]
Сложность: 2+
Классы: 6,7

Числитель и знаменатель дроби – натуральные числа, дающие в сумме 101. Известно, что дробь не превосходит ⅓.
Укажите наибольшее возможное значение такой дроби.

Прислать комментарий     Решение

Задача 103869

Темы:   [ Ребусы ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 2+
Классы: 6,7,8

Решите ребус:  БАО×БА×Б = 2002.

Прислать комментарий     Решение

Задача 103870

Тема:   [ Разрезания на части, обладающие специальными свойствами ]
Сложность: 2+
Классы: 6,7

Незнайка разрезал фигуру на трёхклеточные и четырёхклеточные уголки, нарисованные справа от неё. Сколько трёхклеточных уголков могло получиться?

Прислать комментарий     Решение


Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 381]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .