ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Автор: Фольклор

На координатной плоскости изображен график функции  y = ax² + c  (см. рисунок). В каких точках график функции  y = cx + a  пересекает оси координат?

Вниз   Решение


Внутри равностороннего треугольника со стороной 1 расположено пять точек. Докажите, что расстояние между некоторыми двумя из них меньше 0, 5.

ВверхВниз   Решение


Сумма кубов трёх последовательных натуральных чисел оказалась кубом натурального числа. Докажите, что среднее из этих трёх чисел делится на 4.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 56751

Темы:   [ Медиана делит площадь пополам ]
[ Подсчет двумя способами ]
Сложность: 2+
Классы: 8,9

Докажите, что медианы разбивают треугольник на шесть равновеликих треугольников.
Прислать комментарий     Решение


Задача 56752

Тема:   [ Медиана делит площадь пополам ]
Сложность: 3
Классы: 9

Дан треугольник ABC. Найдите все такие точки P, что площади треугольников ABP, BCP и ACP равны.
Прислать комментарий     Решение


Задача 56753

Тема:   [ Медиана делит площадь пополам ]
Сложность: 3
Классы: 9

Внутри данного треугольника ABC найдите такую точку O, что площади треугольников BOL, COM и AON равны (точки L, M и N лежат на сторонах AB, BC и CA, причем  OL || BC, OM || AC и  ON || AB; рис.).


Прислать комментарий     Решение

Задача 56754

Тема:   [ Медиана делит площадь пополам ]
Сложность: 3
Классы: 9

На продолжениях сторон треугольника ABC взяты точки A1, B1 и C1 так, что  $ \overrightarrow{AB_1}$ = 2$ \overrightarrow{AB}$, $ \overrightarrow{BC_1}$ = 2$ \overrightarrow{BC}$ и  $ \overrightarrow{CA_1}$ = 2$ \overrightarrow{AC}$. Найдите площадь треугольника A1B1C1, если известно, что площадь треугольника ABC равна S.
Прислать комментарий     Решение


Задача 56755

Тема:   [ Медиана делит площадь пополам ]
Сложность: 4
Классы: 9

На продолжениях сторон DA, AB, BC, CD выпуклого четырехугольника ABCD взяты точки  A1, B1, C1, D1 так, что  $ \overrightarrow{DA_1}$ = 2$ \overrightarrow{DA}$, $ \overrightarrow{AB_1}$ = 2$ \overrightarrow{AB}$, $ \overrightarrow{BC_1}$ = 2$ \overrightarrow{BC}$ и  $ \overrightarrow{CD_1}$ = 2$ \overrightarrow{CD}$. Найдите площадь получившегося четырехугольника  A1B1C1D1, если известно, что площадь четырехугольника ABCD равна S.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .