ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Год проведения нынешнего математического праздника делится на его номер:  2006 : 17 = 118.
  а) Назовите первый номер матпраздника, для которого это тоже было выполнено.
  б) Назовите последний номер матпраздника, для которого это тоже будет выполнено.

Вниз   Решение


Сетка линий, изображённая на рисунке, состоит из концентрических окружностей с радиусами 1, 2, 3, 4,... и центром в точке О, прямой l, проходящей через точку О, и всевозможных касательных к окружностям, параллельных l. Вся плоскость разбита этими линиями на клетки, которые раскрашены в шахматном порядке. В цепочке точек, показанных на рисунке, каждые две соседние точки являются противоположными вершинами тёмной клетки. Докажите, что все точки такой бесконечной цепочки лежат на одной параболе (поэтому рисунок словно соткан из светлых и тёмных парабол).

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 103800  (#1)

Тема:   [ Задачи-шутки ]
Сложность: 2-
Классы: 5,6,7

В двух кошельках лежат две монеты, причём в одном кошельке монет вдвое больше, чем в другом. Как такое может быть?

Прислать комментарий     Решение


Задача 103801  (#2)

Тема:   [ Задачи на проценты и отношения ]
Сложность: 2+
Классы: 7,8,9

Алик, Боря и Вася собирали грибы. Боря собрал грибов на 20% больше, чем Алик, но на 20% меньше, чем Вася.
На сколько процентов больше Алика собрал грибов Вася?

Прислать комментарий     Решение

Задача 103802  (#3)

Темы:   [ Правило произведения ]
[ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
[ Мощность множества. Взаимно-однозначные отображения ]
Сложность: 2+
Классы: 7,8

Каких пятизначных чисел больше: не делящихся на 5 или тех, у которых ни первая, ни вторая цифра слева – не пятёрка?

Прислать комментарий     Решение

Задача 103803  (#4)

Темы:   [ Математическая логика (прочее) ]
[ Числовые таблицы и их свойства ]
[ Арифметика. Устный счет и т.п. ]
Сложность: 3
Классы: 7

Три человека A, B, C пересчитали кучу шариков четырёх цветов (см. таблицу).

При этом каждый из них правильно различал какие-то два цвета, а два других мог путать: один путал красный и оранжевый, другой – оранжевый и жёлтый, а третий – жёлтый и зелёный. Результаты их подсчётов приведены в таблице. Сколько каких шариков было на самом деле?

Прислать комментарий     Решение

Задача 103804  (#5)

Темы:   [ Разные задачи на разрезания ]
[ Пятиугольники ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 2+
Классы: 7,8

Автор: Ботин Д.А.

Можно ли разрезать на четыре остроугольных треугольника
  а) какой-нибудь выпуклый пятиугольник,
  б) правильный пятиугольник.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .