ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

На клетчатой бумаге изобразите многоугольник, который можно одним прямолинейным разрезом разделить на четыре равных треугольника. Покажите, как это можно сделать. (Вершины многоугольника должны располагаться в узлах сетки, но стороны и разрез не обязательно проводить по линиям сетки.)

Вниз   Решение


На рисунке можно найти 9 прямоугольников. Известно, что у каждого из них длина и ширина – целые.
Сколько прямоугольников из этих девяти могут иметь нечётную площадь?

ВверхВниз   Решение


На улице n домов. Каждый день почтальон идёт на почту, берёт там письма для жителей одного дома и разносит их. Затем он возвращается на почту, берёт письма для жителей другого дома и снова их разносит. И так он обходит все дома. В каком месте нужно построить почту, чтобы почтальону пришлось проходить наименьшее расстояние? Улицу можно считать отрезком прямой.
  а) Решите задачу для  n = 5.
  б) Решите задачу для  n = 6.
  в) Решите задачу для произвольного n.

Вверх   Решение

Задачи

Страница: << 122 123 124 125 126 127 128 >> [Всего задач: 7526]      



Задача 53425

Темы:   [ Параллельные прямые, свойства и признаки. Секущие ]
[ Равные треугольники. Признаки равенства ]
Сложность: 3-
Классы: 8,9

Через середину M отрезка с концами на двух параллельных прямых проведена прямая, пересекающая эти прямые в точках A и B.
Докажите, что M также середина AB.

Прислать комментарий     Решение

Задача 53437

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3-
Классы: 8,9

Угол при основании BC равнобедренного треугольника ABC вдвое больше угла при вершине, BD – биссектриса треугольника. Докажите, что  AD = BC.

Прислать комментарий     Решение

Задача 53439

Темы:   [ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Биссектриса угла ]
Сложность: 3-
Классы: 8,9

На сторонах AC и BC треугольника ABC взяты соответственно точки M и N, причём  MN || AB  и  MN = AM.
Найдите угол BAN, если  ∠B = 45°  и  ∠C = 60°.

Прислать комментарий     Решение

Задача 53445

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Взаимное расположение высот, медиан, биссектрис и проч. ]
Сложность: 3-
Классы: 8,9

Два угла треугольника равны 10° и 70°. Найдите угол между высотой и биссектрисой, проведёнными из вершины третьего угла треугольника.

Прислать комментарий     Решение

Задача 53449

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Углы между биссектрисами ]
[ Конкуррентность высот. Углы между высотами. ]
Сложность: 3-
Классы: 8,9

Высоты остроугольного треугольника ABC, проведённые из вершин A и B, пересекаются в точке H, причём  ∠AHB = 120°,  а биссектрисы, проведённые из вершин B и C, – в точке K, причём  ∠BKC = 130°.  Найдите угол ABC.

Прислать комментарий     Решение

Страница: << 122 123 124 125 126 127 128 >> [Всего задач: 7526]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .