|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Интернет-ресурсы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи На клетчатой бумаге изобразите многоугольник, который можно одним прямолинейным разрезом разделить на четыре равных треугольника. Покажите, как это можно сделать. (Вершины многоугольника должны располагаться в узлах сетки, но стороны и разрез не обязательно проводить по линиям сетки.) На рисунке можно найти 9 прямоугольников. Известно, что у каждого из них длина и ширина – целые. На улице n домов. Каждый день почтальон идёт на почту, берёт там письма для жителей одного дома и разносит их. Затем он возвращается на почту, берёт письма для жителей другого дома и снова их разносит. И так он обходит все дома. В каком месте нужно построить почту, чтобы почтальону пришлось проходить наименьшее расстояние? Улицу можно считать отрезком прямой. |
Страница: << 122 123 124 125 126 127 128 >> [Всего задач: 7526]
Через середину M отрезка с концами на двух параллельных прямых проведена прямая, пересекающая эти прямые в точках A и B.
Угол при основании BC равнобедренного треугольника ABC вдвое больше угла при вершине, BD – биссектриса треугольника. Докажите, что AD = BC.
На сторонах AC и BC треугольника ABC взяты соответственно точки M и N, причём MN || AB и MN = AM.
Два угла треугольника равны 10° и 70°. Найдите угол между высотой и биссектрисой, проведёнными из вершины третьего угла треугольника.
Высоты остроугольного треугольника ABC, проведённые из вершин A и B, пересекаются в точке H, причём ∠AHB = 120°, а биссектрисы, проведённые из вершин B и C, – в точке K, причём ∠BKC = 130°. Найдите угол ABC.
Страница: << 122 123 124 125 126 127 128 >> [Всего задач: 7526] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|