ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Главы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
Дана плоская замкнутая ломаная периметра 1. Доказать, что можно начертить круг
радиусом
Сумма нескольких не обязательно различных положительных чисел не превосходила 100. Каждое из них заменили на новое следующим образом: сначала прологарифмировали по основанию 10, затем округлили стандартным образом до ближайшего целого числа и, наконец, возвели 10 в найденную целую степень. Могло ли оказаться так, что сумма новых чисел превышает 300? |
Страница: << 80 81 82 83 84 85 86 >> [Всего задач: 559]
В ряд выписаны числа 1, 2, 3, ..., n. За один ход разрешается поменять местами любые два числа.
Дана некоторая тройка чисел. С любыми двумя из них разрешается проделывать следующее: если эти числа равны a и b, то их можно заменить на
Докажите, что не существует графа без петель и кратных рёбер с пятью вершинами, степени которых равны 4, 4, 4, 4, 2.
Докажите, что существует граф с 2n вершинами, степени которых равны 1, 1, 2, 2, ..., n, n.
Верно ли, что два графа изоморфны, если
Страница: << 80 81 82 83 84 85 86 >> [Всего задач: 559]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке