ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Докажите, что квадрат со стороной n не может накрыть более (n + 1)2 точек
целочисленной решётки.
Коттеджный посёлок имеет размеры 𝑛 × 𝑚 одинаковых квадратных участков. Собственники по очереди начали огораживать свои участки забором. Стоимость части забора между любыми двумя соседними участками составила 10 тысяч рублей и её полностью нёс тот сосед, который огораживал свой участок первым (расходы не делились между соседями, то есть некоторые могли вообще ничего не потратить). В итоге все участки оказались огорожены забором с четырёх сторон. Могло ли оказаться, что в итоге поровну жителей потратило на забор по 0, 10, 30 и 40 тысяч рублей, а остальные — по 20 тысяч? |
Страница: 1 2 >> [Всего задач: 8]
На отрезке длиной 1 дано n точек. Докажите, что
сумма расстояний от некоторой точки отрезка до этих точек не
меньше n/2.
Докажите, что замкнутую ломаную длины 1 можно
поместить в круг радиуса 0, 25.
В некотором лесу расстояние между каждыми двумя деревьями не превосходит разности их высот. Все деревья имеют высоту меньше 100 м.
В лесу растут деревья цилиндрической формы.
Связисту нужно протянуть провод из точки A в точку B,
расстояние между которыми равно l. Докажите, что для
этой цели ему достаточно куска провода длиной 1, 6l.
Остроугольный треугольник расположен внутри
окружности. Докажите, что ее радиус не меньше радиуса описанной
окружности треугольника.
Страница: 1 2 >> [Всего задач: 8]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке