ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Доказать, что число 221959 – 1 делится на 3.

Вниз   Решение


Найдите наименьшее значение функции y = 2 sin x+x+3 на отрезке [-;0] .

ВверхВниз   Решение


Даны натуральные числа m и n. Найти такие натуральные числа m1 и n1, не имеющие общих делителей, что m1 / n1 = m / n.

ВверхВниз   Решение


У царя есть 7 мешков с золотыми монетами, в каждом по 100 монет. Царь помнит, что в одном мешке все монеты весят 7 г, во втором 8 г, в третьем 9 г, в четвёртом 10 г, в пятом 11 г, в шестом 12 г, в седьмом 13 г, но не помнит, где какие.

Царь сообщил это придворному мудрецу и указал на один из мешков. Мудрец может вынимать из этого и из других мешков любое количество монет, но на вид они все одинаковы. Однако у мудреца есть большие двухчашечные весы без гирь (они точно покажут, равны ли веса на чашках, а если нет, то какая чашка тяжелее). Может ли мудрец определить, какие монеты в указанном мешке, сделав не более двух взвешиваний?

Вверх   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 12]      



Задача 86496  (#1.1)

Тема:   [ Неравенства с модулями ]
Сложность: 2
Классы: 8,9

Решите неравенство:
|x + 2000| < |x - 2001|.
Прислать комментарий     Решение


Задача 86497  (#1.2)

Тема:   [ Сумма длин диагоналей четырехугольника ]
Сложность: 3
Классы: 7,8,9

Существует ли выпуклый четырёхугольник, у которого сумма длин диагоналей не меньше периметра?

Прислать комментарий     Решение

Задача 86498  (#1.3)

Темы:   [ Площади криволинейных фигур ]
[ Касающиеся окружности ]
[ Отношения площадей подобных фигур ]
Сложность: 3-
Классы: 8,9

Через центр окружности проведены еще четыре окружности, касающиеся данной (см. рис.). Сравните площади фигур, выделенных на рисунке черным и серым цветом соответственно.

Прислать комментарий     Решение

Задача 86499  (#2.1)

Темы:   [ Системы алгебраических нелинейных уравнений ]
[ Симметрические системы. Инволютивные преобразования ]
[ Неопределено ]
Сложность: 3-
Классы: 8,9,10

Решите систему уравнений:
    1 – x1x2 = 0,
    1 – x2x3 = 0,
    ...
    1 – x2000x2001 = 0,
    1 – x2001x1 = 0.

Прислать комментарий     Решение

Задача 86500  (#2.2)

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Вписанный угол, опирающийся на диаметр ]
[ Вписанный угол равен половине центрального ]
[ Треугольники с углами $60^\circ$ и $120^\circ$ ]
[ Правильный (равносторонний) треугольник ]
Сложность: 3-
Классы: 8,9

В остроугольном треугольнике ABC угол B равен 60°, AM и CN – его высоты, а Q – середина стороны AC.
Докажите, что треугольник MNQ – равносторонний.

Прислать комментарий     Решение

Страница: 1 2 3 >> [Всего задач: 12]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .