ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дано прямоугольное клетчатое поле M × N клеток. Каждая клетка поля покрашена в один из шести цветов, причем левая верхняя и правая нижняя клетки имеют различный цвет. В результате поле разбивается на некоторое количество одноцветных областей: две клетки одного цвета, имеющие общую сторону, принадлежат одной области.

Правила игры

Играют два игрока. За первым игроком закреплена область, включающая левую верхнюю клетку, за вторым – правую нижнюю. Игроки ходят по очереди. Делая ход, игрок перекрашивает свою область: 
    А) в любой из шести цветов;
    Б) в любой из шести цветов, за исключением цвета своей области и цвета области противника.
В результате хода к области игрока присоединяются все прилегающие к ней области выбранного цвета, если такие имеются. Если после очередного хода окажется, что области игроков соприкасаются, то игра заканчивается.

Задание

Напишите программу, которая для каждого из пунктов (А и Б) определяет минимально возможное число ходов, по прошествии которых игра может завершиться.

Входные данные

Цвета пронумерованы цифрами от 1 до 6. Первая строка входного файла содержит целые числа M и N – размеры поля (1 ≤ M,N ≤ 50). Далее следует описание раскраски поля – M строк по N цифр (от 1 до 6) в каждой без пробелов. Первая цифра файла соответствует цвету левой верхней клетки игрового поля. Количество одноцветных областей не превосходит 50.

Выходные данные

В выходной файл выведите искомое количество ходов для каждого из пунктов. Если ваша программа решает только один из пунктов, выведите произвольное целое число в качестве ответа на другой пункт.

Пример входного файла

4 3
122
221
143
132

Пример выходного файла

3
4

   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 82]      



Задача 57582  (#12.001)

Тема:   [ Теорема синусов ]
Сложность: 2
Классы: 9

Докажите, что площадь S треугольника равна abc/4R.
Прислать комментарий     Решение


Задача 57583  (#12.002)

Тема:   [ Теорема синусов ]
Сложность: 2
Классы: 9

Точка D лежит на основании AC равнобедренного треугольника ABC. Докажите, что радиусы описанных окружностей треугольников ABD и CBD равны.
Прислать комментарий     Решение


Задача 57584  (#12.003)

Тема:   [ Теорема синусов ]
Сложность: 2
Классы: 9

Выразите площадь треугольника ABC через длину стороны BC и величины углов B и C.
Прислать комментарий     Решение


Задача 57585  (#12.004)

Тема:   [ Теорема синусов ]
Сложность: 3
Классы: 9

Докажите, что

$\displaystyle \left.\vphantom{\frac{a+b}{c}=\cos\frac{\alpha -\beta }{2}
}\right.$$\displaystyle {\frac{a+b}{c}}$ = cos$\displaystyle {\frac{\alpha -\beta }{2}}$$\displaystyle \left.\vphantom{\frac{a+b}{c}=\cos\frac{\alpha -\beta }{2}
}\right/$sin$\displaystyle {\frac{\gamma }{2}}$,    и    $\displaystyle \left.\vphantom{\frac{a-b}{c}=
\sin\frac{\alpha -\beta }{2}}\right.$$\displaystyle {\frac{a-b}{c}}$ = sin$\displaystyle {\frac{\alpha -\beta }{2}}$$\displaystyle \left.\vphantom{\frac{a-b}{c}=
\sin\frac{\alpha -\beta }{2}}\right/$cos$\displaystyle {\frac{\gamma }{2}}$.


Прислать комментарий     Решение

Задача 57586  (#12.005)

Тема:   [ Теорема синусов ]
Сложность: 3
Классы: 9

В остроугольном треугольнике ABC проведены высоты AA1 и CC1. Точки A2 и C2 симметричны A1 и C1 относительно середин сторон BC и AB. Докажите, что прямая, соединяющая вершину B с центром O описанной окружности, делит отрезок A2C2 пополам.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 82]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .