ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

В прямоугольном параллелепипеде одно из сечений является правильным шестиугольником. Докажите, что этот параллелепипед – куб.

Вниз   Решение


Автор: Дужин С.В.

Улицы города Дужинска – простые ломаные, не пересекающиеся между собой во внутренних точках. Каждая улица соединяет два перекрёстка и покрашена в один из трёх цветов: белый, красный или синий. На каждом перекрёстке сходятся ровно три улицы, по одной каждого цвета. Перекрёсток называется положительным, если при его обходе против часовой стрелки цвета улиц идут в следующем порядке: белый, синий, красный, и отрицательным в противном случае. Докажите, что разность между числом положительных и числом отрицательных перекрёстков кратна 4.

ВверхВниз   Решение


Дима пишет подряд натуральные числа: 123456789101112... .
На каких местах, считая от начала, в первый раз будут стоять три цифры 5 подряд?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 57644  (#12.061)

Тема:   [ Взаимоотношения между сторонами и углами треугольников (прочее) ]
Сложность: 3
Классы: 9

Окружность S с центром O на основании BC равнобедренного треугольника ABC касается равных сторон AB и AC. На сторонах AB и AC взяты точки P и Q так, что отрезок PQ касается окружности S. Докажите, что тогда  4PB . CQ = BC2.
Прислать комментарий     Решение


Задача 57645  (#12.062)

Тема:   [ Взаимоотношения между сторонами и углами треугольников (прочее) ]
Сложность: 4+
Классы: 9

Пусть E — середина стороны AB квадрата ABCD, а точки F и G выбраны на сторонах BC и CD так, что AG| EF. Докажите, что отрезок FG касается окружности, вписанной в квадрат ABCD.
Прислать комментарий     Решение


Задача 57646  (#12.063)

Тема:   [ Взаимоотношения между сторонами и углами треугольников (прочее) ]
Сложность: 4+
Классы: 9

Хорда окружности удалена от центра на расстояние h. В каждый из сегментов, стягиваемых хордой, вписан квадрат так, что две соседние вершины квадрата лежат на дуге, а две другие — на хорде или ее продолжении (рис.). Чему равна разность длин сторон этих квадратов?


Прислать комментарий     Решение

Задача 57647  (#12.064)

Темы:   [ Взаимоотношения между сторонами и углами треугольников (прочее) ]
[ Длины сторон, высот, медиан и биссектрис ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Вневписанные окружности ]
Сложность: 5
Классы: 9,10,11

Найдите отношение сторон треугольника, одна из медиан которого делится вписанной окружностью на три равные части.
Прислать комментарий     Решение


Задача 57648  (#12.065)

Тема:   [ Взаимоотношения между сторонами и углами треугольников (прочее) ]
Сложность: 4+
Классы: 9

В окружность вписан квадрат, а в сегмент, отсеченный от круга из сторон этого квадрата, вписан другой квадрат. Найдите отношение длин сторон этих квадратов.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .