Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

а) Докажите, что для любого параллелограмма существует эллипс, касающийся сторон параллелограмма в их серединах.
б) Докажите, что для любого треугольника существует эллипс, касающийся сторон треугольника в их серединах.

Вниз   Решение


Докажите, что квадрат со стороной n не может накрыть более (n + 1)2 точек целочисленной решётки.

ВверхВниз   Решение


Три прямые, параллельные сторонам данного треугольника, отсекают от него три треугольника, причём остается равносторонний шестиугольник.
Найдите длину стороны шестиугольника, если длины сторон треугольника равны a, b и c.

Вверх   Решение

Задачи

Страница: << 1 2 [Всего задач: 6]      



Задача 86105  (#6)

Темы:   [ Теория игр (прочее) ]
[ Теория графов (прочее) ]
[ Необычные конструкции ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4+
Классы: 8,9,10

На плоскости даны 2005 точек (никакие три из которых не лежат на одной прямой). Каждые две точки соединены отрезком. Тигр и Осёл играют в следующую игру. Осёл помечает каждый отрезок одной из цифр, а затем Тигр помечает каждую точку одной из цифр. Осёл выигрывает, если найдутся две точки, помеченные той же цифрой, что и соединяющий их отрезок, и проигрывает в противном случае. Доказать, что при правильной игре Осёл выиграет.

Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .