|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Семь монет расположены по кругу. Известно, что какие-то четыре из них, идущие подряд, – фальшивые и что каждая фальшивая монета легче настоящей. Объясните, как найти две фальшивые монеты за одно взвешивание на чашечных весах без гирь. (Все фальшивые монеты весят одинаково.) На прозрачном столе стоит куб 3×3×3, составленный из 27 одинаковых кубиков. Со всех шести сторон (спереди, сзади, слева, справа, сверху, снизу) мы видим квадрат 3×3. Какое наибольшее число кубиков можно убрать так, чтобы со всех сторон был виден квадрат 3×3 и при этом оставшаяся система кубиков не разваливалась? |
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 99]
Сколько имеется четырёхзначных чисел, которые делятся на 45, а две средние цифры у них – 97?
Докажите, что произведение последней цифры числа 2n и суммы всех цифр этого числа, кроме последней, делится на 3.
Может ли сумма цифр точного квадрата равняться 1970?
Из трёхзначного числа вычли сумму его цифр. С полученным числом проделали то же самое и так далее, 100 раз. Докажите, что в результате получится нуль.
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 99] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|