ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
год/номер:
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

На отрезке  [0, N]  отмечены его концы и еще две точки так, что длины отрезков, на которые разбился отрезок  [0, N],  целые и взаимно просты в совокупности. Если нашлись такие две отмеченные точки A и B, что расстояние между ними кратно 3, то можно разделить отрезок AB на три равных части, отметить одну из точек деления и стереть одну из точек A, B. Верно ли, что за несколько таких действий можно отметить любую наперед заданную целую точку отрезка  [0, N]?

Вниз   Решение


Дан вписанный четырёхугольник $ABCD$. Пусть $M_{ac}$ – середина диагонали $AC$; $H_d$, $H_b$ – ортоцентры треугольников $ABC$, $ADC$ соответственно; $P_d$, $P_b$ – проекции $H_d$ и $H_b$ на $BM_{ac}$ и $DM_{ac}$ соответственно. Аналогично определим $P_a$, $P_c$ для диагонали $BD$. Докажите, что $P_a$, $P_b$, $P_c$, $P_d$ лежат на одной окружности.

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 557]      



Задача 64786

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Медиана, проведенная к гипотенузе ]
Сложность: 2+
Классы: 6,7,8

В треугольнике DEF проведена медиана DK. Найдите углы треугольника, если  ∠KDE = 70°,  ∠DKF = 140°.

Прислать комментарий     Решение

Задача 64822

Темы:   [ Квадратные уравнения. Формула корней ]
[ Уравнения в целых числах ]
Сложность: 2+
Классы: 8,9,10

Решите уравнение:  x(x + 1) = 2014·2015.

Прислать комментарий     Решение

Задача 64834

Тема:   [ Иррациональные неравенства ]
Сложность: 2+
Классы: 8,9,10

Существует ли такое x, что    ?

Прислать комментарий     Решение

Задача 64889

Тема:   [ Сумма внутренних и внешних углов многоугольника ]
Сложность: 2+
Классы: 10,11

Существует ли выпуклый 1000-угольник, у которого все углы выражаются целыми числами градусов?

Прислать комментарий     Решение

Задача 64891

Тема:   [ Функции. Непрерывность (прочее) ]
Сложность: 2+
Классы: 10,11

Числовая функция  f такова, что для любых x и y выполняется равенство  f(x + y) = f(x) + f(y) + 80xy.  Найдите  f(1), если  f(0,25) = 2.

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 557]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .