Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Две грани треугольной пирамиды – равносторонние треугольники со стороной a . Две другие грани – равнобедренные прямоугольные треугольники. Найдите радиус вписанного в пирамиду шара.

Вниз   Решение


Петя разрезал прямоугольный лист бумаги по прямой на две части. Затем одну часть снова разрезал по прямой на две. Потом одну из получившихся частей опять разрезал на две части, и так далее, всего он резал бумагу сто раз. Потом Петя подсчитал суммарное количество вершин у всех получившихся многоугольников – получилось всего 302 вершины. Могло ли так быть?

Вверх   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 12]      



Задача 65653  (#7.1.1)

Тема:   [ Арифметика. Устный счет и т.п. ]
Сложность: 2+
Классы: 7,8,9

Сумма вычитаемого, уменьшаемого и разности равна 2016. Найдите уменьшаемое.

Прислать комментарий     Решение

Задача 65654  (#7.1.2)

Темы:   [ Четырехугольники (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2+
Классы: 7,8,9

Существует ли такой четырёхугольник, что любая диагональ делит его на два тупоугольных треугольника?

Прислать комментарий     Решение

Задача 65655  (#7.1.3)

Темы:   [ Простые числа и их свойства ]
[ Разложение на множители ]
Сложность: 3
Классы: 7,8,9

Может ли разность четвёртых степеней простых чисел быть простым числом?

Прислать комментарий     Решение

Задача 65656  (#7.2.1)

Тема:   [ Системы линейных уравнений ]
Сложность: 3
Классы: 7,8,9

Решите уравнение   1 + 1 : (1 + 1 : (1 + 1 : (x + 2016))) = (1,2)².

Прислать комментарий     Решение

Задача 65657  (#7.2.2)

Темы:   [ Параллельные прямые, свойства и признаки. Секущие ]
[ Вспомогательные равные треугольники ]
Сложность: 3
Классы: 7,8,9

На стороне ВС треугольника АВС отмечена точка E, а на биссектрисе BD – точка F таким образом, что  EF || AC  и  AF = AD.  Докажите, что  AВ = ВЕ.

Прислать комментарий     Решение

Страница: 1 2 3 >> [Всего задач: 12]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .