ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи a) Петя и Вася задумали по три натуральных числа. Петя для каждых двух своих чисел написал на доске их наибольший общий делитель. Вася для каждых двух из своих чисел написал на доске их наименьшее общее кратное. Оказалось, что Петя написал на доске те же числа, что и Вася (возможно в другом порядке). Докажите, что все написанные на доске числа равны. б) Останется ли верным утверждение предыдущей задачи, если Петя и Вася изначально задумали по четыре натуральных числа? |
Страница: 1 2 >> [Всего задач: 7]
Число N является произведением двух последовательных натуральных чисел. Докажите, что
На сторонах АВ и ВС треугольника АВС выбраны точки К и М соответственно так, что КМ || АС. Отрезки АМ и КС пересекаются в точке О. Известно, что АК = АО и КМ = МС. Докажите, что АМ = КВ.
Дана клетчатая полоска (шириной в одну клетку), бесконечная в обе стороны. Две клетки полоски являются ловушками, между ними – N клеток, на одной из которых сидит кузнечик. На каждом ходу мы называем натуральное число, после чего кузнечик прыгает на это число клеток влево или вправо (по своему выбору). При каких N можно называть числа так, чтобы гарантированно загнать кузнечика в одну из ловушек, где бы он ни был изначально между ловушками и как бы ни выбирал направления прыжков? (Мы всё время видим, где сидит кузнечик.)
Несколько (конечное число) точек плоскости окрашены в четыре цвета, причём есть точки каждого цвета. Никакие три из этих точек не лежат на одной прямой. Докажите, что найдутся три разных (возможно, пересекающихся) треугольника, каждый из которых имеет вершины трёх разных цветов и не содержит внутри себя окрашенных точек.
По кругу стоят 99 детей, изначально у каждого есть мячик. Ежеминутно каждый ребёнок с мячиком кидает свой мячик одному из двух соседей; при этом, если два мячика попадают к одному ребёнку, то один из этих мячиков теряется безвозвратно. Через какое наименьшее время у детей может остаться только один мячик?
Страница: 1 2 >> [Всего задач: 7]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке