ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Из любых четырёх точек на плоскости, никакие три из которых не лежат на одной прямой, можно так выбрать три, что треугольник с вершинами в этих точках имеет хотя бы один угол, не больший 45o. Доказать. (Сравните с задачей 2 для 10 класса.) |
Страница: 1 [Всего задач: 4]
Существует ли такое натуральное число A, что если приписать его к самому себе справа, то полученное число окажется полным квадратом?
Существует ли такой выпуклый 1976-гранник, который обладал бы следующим свойством: при произвольной расстановке стрелок на концах его рёбер сумма полученных векторов отлична от 0?
В клетках таблицы размером 10×20 расставлено 200 различных чисел. В каждой строчке отмечены три наибольших числа красным цветом, а в каждом столбце отмечены три наибольших числа синим цветом. Доказать, что не менее девяти чисел отмечены в таблице как красным, так и синим цветом.
На плоскости задано конечное множество точек. Доказать, что в нём найдётся точка, у которой имеется не более трёх ближайших к ней точек из этого же множества.
Страница: 1 [Всего задач: 4]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке