ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи а) Докажите, что для любого параллелограмма
существует эллипс, касающийся сторон параллелограмма в их
серединах.
Докажите, что квадрат со стороной n не может накрыть более (n + 1)2 точек
целочисленной решётки.
Три прямые, параллельные сторонам данного треугольника, отсекают от него три треугольника, причём остается равносторонний шестиугольник. Докажите, что для любого натурального N существует N точек,
никакие три из которых не лежат на одной прямой и все попарные
расстояния между которыми являются целыми числами.
Через центр O правильного треугольника ABC проведена прямая, пересекающая прямые BC, CA и AB в точках A1, B1 и C1. |
Страница: << 1 2 [Всего задач: 6]
Докажите, что в пространстве существует такое расположение 2001 выпуклого многогранника, что никакие три из многогранников не имеют общих точек, а каждые два касаются друг друга (то есть имеют хотя бы одну граничную точку, но не имеют общих внутренних точек).
Страница: << 1 2 [Всего задач: 6]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке