ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Есть доска 1×1000, вначале пустая, и куча из n фишек. Двое ходят по очереди. Первый своим ходом "выставляет" на доску не более 17 фишек по одной на любое свободное поле (он может взять все 17 из кучи, а может часть – из кучи, а часть – переставить на доске). Второй снимает с доски любую серию фишек (серия – это несколько фишек, стоящих подряд, то есть без свободных полей между ними) и кладёт их обратно в кучу. Первый выигрывает, если ему удастся выставить все фишки в ряд без пробелов.
  а) Докажите, что при  n = 98  первый всегда может выиграть.
  б) При каком наибольшем n первый всегда может выиграть?

Вниз   Решение


В стране Анчурии, где правит президент Мирафлорес, приблизилось время новых президентских выборов. В стране ровно 20 миллионов избирателей, из которых только один процент поддерживает Мирафлореса (регулярная армия Анчурии). Мирафлорес, естественно, хочет быть избранным, но, с другой стороны, он хочет, чтобы выборы были "демократическими". "Демократическим голосованием" Мирафлорес называет вот что: все избиратели разбиваются на равные группы; каждая из этих групп вновь разбивается на некоторое количество равных групп, причём большие группы могут разбиваться на разное количество меньших групп, затем эти группы снова разбиваются и т.д. В самых мелких группах выбирают представителя группы "выборщика" для голосования в большей группе: выборщики в этой большей группе выбирают выборщика для голосования в ещё большей группе и т.д. Наконец, представители самых больших групп выбирают президента. Мирафлорес делит избирателей на группы по своей воле и инструктирует своих сторонников, как им голосовать. Сможет ли он так организовать "демократические" выборы, чтобы его выбрали? (В каждой группе выборщики выбирают своего представителя простым большинством. При равенстве голосов побеждает оппозиция.)

Вверх   Решение

Задачи

Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 4556]      



Задача 87936

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Обратный ход ]
Сложность: 2
Классы: 5,6,7

Дедка вдвое сильнее Бабки, Бабка втрое сильнее Внучки, Внучка вчетверо сильнее Жучки, Жучка впятеро сильнее Кошки, Кошка вшестеро сильнее Мышки. Дедка, Бабка, Внучка, Жучка и Кошка вместе с Мышкой могут вытащить Репку, а без Мышки  — не могут. Сколько надо позвать Мышек, чтобы они смогли сами вытащить Репку?
Прислать комментарий     Решение


Задача 87939

Темы:   [ Необычные конструкции ]
[ Геометрия на клетчатой бумаге ]
Сложность: 2
Классы: 5,6,7

Можно ли в тетрадном листке вырезать такую дырку, через которую пролез бы человек?
Прислать комментарий     Решение


Задача 87940

Темы:   [ Подсчет двумя способами ]
[ Задачи на работу ]
Сложность: 2
Классы: 5,6,7

Три купчихи – Сосипатра Титовна, Олимпиада Карповна и Поликсена Уваровна – сели пить чай. Олимпиада Карповна и Сосипатра Титовна выпили вдвоём 11 чашек, Поликсена Уваровна и Олимпиада Карповна – 15, а Сосипатра Титовна и Поликсена Уваровна – 14. Сколько чашек чая выпили все три купчихи вместе?

Прислать комментарий     Решение

Задача 87951

Тема:   [ Разрезания (прочее) ]
Сложность: 2
Классы: 5,6,7

Как разделить блинчик тремя прямолинейными разрезами на 4, 5, 6, 7 частей?
Прислать комментарий     Решение


Задача 87953

Тема:   [ Разные задачи на разрезания ]
Сложность: 2
Классы: 5,6,7

Можно ли испечь такой торт, который может быть разделён одним прямолинейным разрезом на 4 части?
Прислать комментарий     Решение


Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 4556]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .