ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 56759

Тема:   [ Площадь треугольника. ]
Сложность: 3
Классы: 9

Каждая диагональ выпуклого пятиугольника ABCDE отсекает от него треугольник единичной площади. Вычислите площадь пятиугольника ABCDE.
Прислать комментарий     Решение


Задача 54482

Темы:   [ Перенос стороны, диагонали и т.п. ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 8,9

Высота трапеции, диагонали которой взаимно перпендикулярны, равна 4. Найдите площадь трапеции, если известно, что одна из её диагоналей равна 5.

Прислать комментарий     Решение


Задача 56760

Тема:   [ Площадь треугольника. ]
Сложность: 4
Классы: 9

В прямоугольник ABCD вписаны два различных прямоугольника, имеющих общую вершину K на стороне AB. Докажите, что сумма их площадей равна площади прямоугольника ABCD.
Прислать комментарий     Решение


Задача 56761

Тема:   [ Площадь треугольника. ]
Сложность: 5
Классы: 9

В треугольнике ABC точка E — середина стороны BC, точка D лежит на стороне AC, AC = 1, $ \angle$BAC = 60o, $ \angle$ABC = 100o, $ \angle$ACB = 20o и  $ \angle$DEC = 80o (рис.). Чему равна сумма площади треугольника ABC и удвоенной площади треугольника CDE?


Прислать комментарий     Решение

Задача 56762

Тема:   [ Площадь треугольника. ]
Сложность: 5
Классы: 9

В треугольник  Ta = $ \triangle$A1A2A3 вписан треугольник  Tb = $ \triangle$B1B2B3, а в треугольник Tb вписан треугольник  Tc = $ \triangle$C1C2C3, причем стороны треугольников Ta и Tc параллельны. Выразите площадь треугольника Tb через площади треугольников Ta и Tc.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .