ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 63 64 65 66 67 68 69 >> [Всего задач: 6702]      



Задача 52592

Тема:   [ Касающиеся окружности ]
Сложность: 3-
Классы: 8,9

Две равных окружности касаются изнутри третьей и касаются между собой. Соединив три центра, получим треугольник с периметром, равным 18. Найдите радиус большей окружности.

Прислать комментарий     Решение


Задача 52599

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Экстремальные свойства. Задачи на максимум и минимум. ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3-
Классы: 8,9

Дана окружность с хордой и касательной, причём точка касания лежит на меньшей из двух дуг, стягиваемых хордой.
Найдите на касательной точку, из которой хорда видна под наибольшим углом.

Прислать комментарий     Решение

Задача 52607

Темы:   [ Вписанный угол равен половине центрального ]
[ Признаки и свойства касательной ]
Сложность: 3-
Классы: 8,9

AB и AC — две хорды, образующие угол BAC, равный 70o. Через точки B и C проведены касательные до пересечения в точке M. Найдите $ \angle$BMC.

Прислать комментарий     Решение


Задача 52608

Темы:   [ Признаки и свойства касательной ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3-
Классы: 8,9

Окружность с центром в точке O делит отрезок AO пополам. Найдите угол между касательными, проведёнными из точки A.

Прислать комментарий     Решение


Задача 52617

Темы:   [ Вписанный угол равен половине центрального ]
[ Теорема синусов ]
Сложность: 3-
Классы: 8,9

Боковая сторона равнобедренного треугольника равна 2, угол при вершине равен 120o. Найдите диаметр описанной окружности.

Прислать комментарий     Решение


Страница: << 63 64 65 66 67 68 69 >> [Всего задач: 6702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .