Страница:
<< 1 2 [Всего задач: 10]
Задача
79442
(#М934)
|
|
Сложность: 5 Классы: 9,10,11
|
В пространстве расположены 2n точек, никакие четыре из которых не лежат в одной плоскости. Проведены n² + 1 отрезков с концами в этих точках. Докажите, что проведённые отрезки образуют
а) хотя бы один треугольник;
б) не менее n треугольников.
Задача
97875
(#М938)
|
|
Сложность: 4- Классы: 8,9
|
Радиус OM круга равномерно вращается, поворачиваясь в секунду на угол 360°/N (N – натуральное число, большее 3). В начальный момент он занимал положение OM0, через секунду – OM1, ещё через две секунды после этого (то есть через три секунды после начала) – OM2, ещё через три секунды после этого – OM3, и т. д., ещё через N – 1 секунду после ОМN–2 – OMN–1.
При каких N эти положения радиуса делят круг на N равных секторов?
а) Верно ли, что к числу таких N относятся все степени двойки?
б) Относятся ли к числу таких N какие-либо числа, не являющиеся
степенями двойки?
Задача
97868
(#М939)
|
|
Сложность: 4- Классы: 7,8,9,10
|
В таблицу 10×10 нужно записать в каком-то порядке цифры 0, 1, 2, 3, ..., 9 так, что каждая цифра встречалась бы 10 раз.
а) Можно ли это сделать так, чтобы в каждой строке и в каждом
столбце встречалось не более четырёх различных цифр?
б) Докажите, что найдётся строка или столбец, в которой (в котором) встречается не меньше четырёх различных чисел.
Задача
97865
(#М952)
|
|
Сложность: 3+ Классы: 9,10,11
|
а) Привести пример такого положительного a, что {a} + {1/a} = 1.
б) Может ли такое a быть рациональным числом?
Задача
79405
(#М955)
|
|
Сложность: 5 Классы: 9,10,11
|
За круглым столом сидят n человек. Разрешается любых двух людей, сидящих
рядом, поменять местами. Какое наименьшее число таких перестановок необходимо
сделать, чтобы в результате каждые два соседа остались бы соседями, но сидели
бы в обратном порядке?
Страница:
<< 1 2 [Всего задач: 10]