Страница: 1
2 >> [Всего задач: 6]
Задача
98307
(#1)
|
|
Сложность: 3+ Классы: 10,11
|
Существует ли в пространстве куб, расстояния от вершин которого до данной
плоскости равны 0, 1, 2, 3, 4, 5, 6, 7?
Задача
98308
(#2)
|
|
Сложность: 4- Классы: 8,9,10
|
Кузнечик вначале сидит в точке M плоскости Oxy вне квадрата
0 ≤ x ≤ 1, 0 ≤ y ≤ 1 (координаты M – нецелые, расстояние от M до центра квадрата равно d). Кузнечик прыгает в точку, симметричную M относительно самой правой (с точки зрения кузнечика) вершины квадрата. Докажите, что за несколько таких прыжков кузнечик не сможет удалиться от центра квадрата более чем на 10d.
Задача
98309
(#3)
|
|
Сложность: 4 Классы: 10,11
|
В равнобедренном треугольнике ABC (AB = AC) угол A равен α. На стороне AB взята точка D так, что AD = AB/n. Найдите сумму n – 1 углов, под которыми виден отрезок AD из точек, делящих сторону BC на n равных частей:
а) при n = 3;
б) при произвольном n.
Задача
98310
(#4)
|
|
Сложность: 5- Классы: 9,10,11
|
В некотором государстве человек может быть зачислен в полицию только в том
случае, если он выше ростом чем 80% (или больше) его соседей. Чтобы доказать
свое право на зачисление в полицию, человек сам называет число R (радиус),
после чего его "соседями" считаются все, кто живёт на расстоянии меньше R от него (число соседей, разумеется, должно быть не нулевое). В этом же государстве
человек освобождается от службы в армии только в том случае, если он ниже
ростом, чем 80% (или больше) его соседей. Определение "соседей" аналогично;
человек сам называет число r (радиус) и т. д., причём R и r не обязательно совпадают. Может ли случиться, что не менее 90% населения имеют право на зачисление в полицию и одновременно не менее 90% населения освобождены от армии? (Каждый человек проживает в определенной точке плоскости.)
Задача
98311
(#5)
|
|
Сложность: 4- Классы: 8,9
|
Докажите, что существует бесконечно много таких троек чисел n – 1, n, n + 1, что:
a) n представимо в виде суммы двух квадратов натуральных (целых
положительных) чисел, а n – 1 и n + 1 – нет;
б) каждое из трёх чисел представимо в виде суммы двух квадратов натуральных чисел.
Страница: 1
2 >> [Всего задач: 6]